OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6295–6305

Edge localization of subwavelength structures by use of polarization interferometry and extreme-value criteria

Michael Totzeck, Harald Jacobsen, and Hans J. Tiziani  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6295-6305 (2000)
http://dx.doi.org/10.1364/AO.39.006295


View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarization interferometric method is presented for the quantitative microscopy of topographical structures with subwavelength linewidths. A liquid-crystal phase shifter is inserted into the imaging optics of a reflected-light microscope, and the principles of phase-shifting interferometry are applied to measuring the phase and the contrast of the TE-polarized image (E parallel edge) with the TM-polarized image (E perpendicular edge) as the reference. This common-path interferometric method provides selective edge detection for line structures because the polarization difference is localized at the structure edges. Two different threshold criteria for linewidth determination are discussed: distance of the contrast minima and distance of the points of the steepest phase change. Linewidths as small as 300 nm were measured at a 635-nm wavelength. The dependence on the illumination numerical aperture, as well as on the material, the width, and the depth of the structure, is investigated both experimentally and by rigorous numerical simulations.

© 2000 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry

History
Original Manuscript: March 3, 2000
Revised Manuscript: May 30, 2000
Published: December 1, 2000

Citation
Michael Totzeck, Harald Jacobsen, and Hans J. Tiziani, "Edge localization of subwavelength structures by use of polarization interferometry and extreme-value criteria," Appl. Opt. 39, 6295-6305 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Nyyssonen, “Linewidth measurement with an optical microscope: the effect of operating conditions on the image profile,” Appl. Opt. 16, 2223–2230 (1977). [CrossRef] [PubMed]
  2. D. Nyyssonen, “Practical method for edge detection and focusing for linewidth measurements on wafers,” Opt. Eng. 26, 81–85 (1987). [CrossRef]
  3. D. Nyyssonen, R. D. Larrabee, “Submicrometer linewidth metrology in the optical microscope,” J. Res. Nat. Bur. Stand. 92, 187–204 (1987). [CrossRef]
  4. K.-P. Schröder, W. Mirandé, H. Geuther, C. Herrmann, “In quest of nanometer accuracy: supporting optical metrology by rigorous diffraction theory and AFM topography,” Opt. Commun. 115, 568–575 (1995). [CrossRef]
  5. For instance, the Leica Model LMS IPRO.
  6. W. Mirandé, C. G. Fraase, “Comparison of linewidth measurements on Si structures performed by atomic force microscopy (AFM) and low voltage scanning electron microscopy (SEM),” in Proceedings of the Third Seminar on Quantitative Microscopy, K. Hasche, W. Mirandé, G. Wilkening, eds. (Physikalisch-Technischen-Bundesanstalt, Braunschweig, Germany, 1998), PTB-Bericht F-34, pp. 89–96.
  7. D. W. Pohl, “Nano-optics and scanning near-field optical microscopy,” in Scanning Tunneling Microscopy II, 2nd. ed., R. Wiesendanger, H.-J. Güntherodt, eds., Vol. 28 of Springer Series in Surface Sciences (Springer-Verlag, Berlin, 1995), pp. 235–271.
  8. D. Sarid, Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences (Oxford U. Press, Oxford, 1994).
  9. M. Totzeck, H. J. Tiziani, “Interference microscopy of sub-λ structures: a rigorous computation method and measurements,” Opt. Commun. 136, 61–74 (1997). [CrossRef]
  10. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988). [CrossRef]
  11. R. Barakat, “Optical linewidth measurements using a polarized microscope with crossed polarizers,” Appl. Opt. 29, 5038–5039 (1990). [CrossRef] [PubMed]
  12. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy (Academic, San Diego, 1996), pp. 286–294.
  13. S. Kimura, T. Wilson, “Confocal scanning dark-field polarization microscopy,” Appl. Opt. 33, 1274–1278 (1994). [CrossRef] [PubMed]
  14. R. F. Cohn, J. W. Wagner, J. Kruger, “Dynamic imaging microellipsometry: theory, system design, and feasibility demonstration,” Appl. Opt. 27, 4664–4671 (1988). [CrossRef] [PubMed]
  15. B. M. Law, H. K. Pak, “Ellipsometric imaging of surface drops,” J. Opt. Soc. Am. A 13, 379–384 (1996). [CrossRef]
  16. C. W. See, M. G. Somekh, R. D. Holmes, “Scanning optical microellipsometer for pure surface profiling,” Appl. Opt. 35, 6663–6668 (1996). [CrossRef] [PubMed]
  17. K. Leonhardt, H. J. Jordan, H. J. Tiziani, “Micro-ellipso-height-profilometry,” Opt. Commun. 80, 205–209 (1991). [CrossRef]
  18. K. Ramesh, V. Ganapathy, “Phase-shifting methodologies in photoelastic analysis—the application of the Jones calculus,” J. Strain Anal. 31, 423–432 (1996). [CrossRef]
  19. A. Asundi, L. Tong, C. G. Boay, “Phase-shifting method with a normal polariscope,” Appl. Opt. 38, 5931–5935 (1999). [CrossRef]
  20. J. W. Jaronski, H. T. Kasprzak, “Generalized algorithm for photoelastic measurements based on phase-stepping imaging polarimetry,” Appl. Opt. 38, 7018–7025 (1999). [CrossRef]
  21. E. R. Cochran, C. Ai, “Interferometric stress birefringence measurement,” Appl. Opt. 31, 6072–6076 (1992). [CrossRef]
  22. D. S. Marx, D. Psaltis, “Polarization quadrature measurement of subwavelength diffracting structures,” Appl. Opt. 36, 6434–6440 (1997). [CrossRef]
  23. R. Oldenbourg, G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995). [CrossRef] [PubMed]
  24. R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J. 60, 629–641 (1991). [CrossRef] [PubMed]
  25. M. Totzeck, H. J. Tiziani, “Phase-shifting polarization interferometry for microstructure linewidth measurements,” Opt. Lett. 24, 294–296 (1999). [CrossRef]
  26. M. Totzeck, H. Jacobsen, H. J. Tiziani, “Phase-shifting polarization interferometry for microstructure inspection,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 75–85 (1999).
  27. J. Schmit, K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649 (1996). [CrossRef] [PubMed]
  28. M. Totzeck, M. A. Krumbügel, “Lateral resolution in the near-field and far-field phase images of π-phase-shifting structures,” Opt. Commun. 112, 189–200 (1994). [CrossRef]
  29. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  30. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  31. H. H. Hopkins, “Image formation with partially coherent light,” Photogr. Sci. Eng. 21, 114–123 (1977).
  32. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  33. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), p. 565.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited