OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6306–6311

Four-dimensional multiphoton microscopy with time-correlated single-photon counting

Andreas Schönle, Markus Glatz, and Stefan W. Hell  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6306-6311 (2000)
http://dx.doi.org/10.1364/AO.39.006306


View Full Text Article

Enhanced HTML    Acrobat PDF (3153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at each pixel or in arbitrarily defined regions of interest. When employing an avalanche photodiode the width of the temporal response function is 420 ps. Although this response confines the temporal resolution to values greater than several hundreds of picoseconds, the lifetime precision is determined by the signal-to-noise ratio and can be in the range of tens of picosconds. Lifetime changes are visualized in pulsed-laser-deposited fluorescent layers as well as in cyan fluorescent proteins that transfer energy to yellow fluorescent proteins in live mammalian cells.

© 2000 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(180.2520) Microscopy : Fluorescence microscopy

History
Original Manuscript: July 5, 2000
Revised Manuscript: July 25, 2000
Published: December 1, 2000

Citation
Andreas Schönle, Markus Glatz, and Stefan W. Hell, "Four-dimensional multiphoton microscopy with time-correlated single-photon counting," Appl. Opt. 39, 6306-6311 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Draaijer, R. Sanders, H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. Pawley, ed. (Plenum, New York, 1995), pp. 491–505. [CrossRef]
  2. J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992). [CrossRef]
  3. J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging using a rf phase-sensitive camera,” Rev. Sci. Instrum. 62(7), 1727–1734 (1991).
  4. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991). [CrossRef] [PubMed]
  5. C. G. Morgan, A. C. Mitchell, C. G. Murray, “Prospects for confocal imaging based on nanosecond fluorescence decay time,” J. Microsc. 165, 49–60 (1991). [CrossRef]
  6. A. Squire, P. J. Verveer, P. I. H. Bastiaens, “Multiple frequency fluorescence imaging microscopy,” J. Microsc. 197, 136–149 (2000). [CrossRef] [PubMed]
  7. X. F. Wang, T. Uchida, D. M. Coleman, S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,” Appl. Spectrosc. 45, 360–366 (1991). [CrossRef]
  8. X. F. Wang, S. Kitajima, T. Uchida, D. M. Coleman, S. Minami, “Time-resolved fluorescence microscopy using multichannel photon counting,” Appl. Spectrosc. 44, 25–30 (1990). [CrossRef]
  9. M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998). [CrossRef]
  10. M. Dyba, T. A. Klar, S. Jakobs, S. W. Hell, “Ultrafast dynamics microscopy,” Appl. Phys. Lett. 77, 597–599 (2000). [CrossRef]
  11. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  12. J. Sytsma, J. M. Vroom, H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191, 39–42 (1998). [CrossRef]
  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd. ed. (Cambridge U. Press, Cambridge, 1993).
  14. M. Schrader, U. G. Hofmann, S. W. Hell, “Ultrathin fluorescent layers for monitoring the axial resolution in confocal and two-photon fluorescence microscopy,” J. Microsc. 191, 135–140 (1998). [CrossRef] [PubMed]
  15. W. Becker, H. Hickl, C. Zander, K. H. Drexhage, M. Sauer, S. Siebert, J. Wolfrum, “Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC),” Rev. Sci. Instrum. 70(3), 1835–1841 (1999).
  16. S. W. Hell, A. Utz, P. E. Hänninen, E. Soini, “Pulsed laser fluorophore deposition: a method for measuring the axial resolution in two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 12, 2072–2076 (1995). [CrossRef]
  17. P. I. H. Bastiaens, I. V. Majoul, P. J. Verveer, H. D. Söling, T. M. Jovin, “Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin,” EMBO 15, 4246–4253 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited