OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6453–6465

Collimated light sources in the diffusion approximation

Thorsten Spott and Lars O. Svaasand  »View Author Affiliations

Applied Optics, Vol. 39, Issue 34, pp. 6453-6465 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Collimated light sources in turbid media are difficult to describe within the diffusion approximation, because they do not meet the requirement of near isotropy. For precise calculation of light intensities close to the source, alternative descriptions of the light source are necessary. In this paper the transition of collimated light into diffusivity is studied by Monte Carlo simulations. On the basis of these simulations and the diffusion approximation a hybrid approach is designed and used to analyze approaches based on analytic source terms. The influence of boundaries to air is studied. The benefits of increased approximation orders are investigated. It is shown that, even in the presence of strong absorption, the diffusion approach can give satisfactory results if only the source terms are suitably chosen.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

Original Manuscript: June 25, 2000
Published: December 1, 2000

Thorsten Spott and Lars O. Svaasand, "Collimated light sources in the diffusion approximation," Appl. Opt. 39, 6453-6465 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  2. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14, 2908–2916 (1999). [CrossRef] [PubMed]
  3. D. A. Boas, L. Wang, T. J. Guadette, A. Siegel, H. Ay, A. G. Sorenson, W. J. Koroshetz, “Optical monitoring of cerebral perfusion as perturbed by an ischemic stroke in an adult human,” in Digest of Topical Meeting on Biomedical Optics: New Concepts in Therapeutic Laser Applications; Novel Biomedical Optical Spectroscopy, Imaging, and Diagnostics; Advances in Optical Imaging, Photon Migration, and Tissue Optics (Optical Society of America, Washington, D.C., 1999), pp. 261–263.
  4. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986). [CrossRef] [PubMed]
  5. M. J. C. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, G. H. M. Gijsbers, “Wavelengths for laser treatment of port wine stains and telangiectasia,” Lasers Surg. Med. 16, 147–155 (1995). [CrossRef] [PubMed]
  6. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  7. J. R. Lamarsh, Introduction to Nuclear Reactor Theory (Addison-Wesley, Reading, Mass., 1975).
  8. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995). [CrossRef]
  9. W. M. Star, “Light dosimetry in vivo,” Phys. Med. Biol. 42, 763–787 (1997). [CrossRef] [PubMed]
  10. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996), http://ftp.osa.org/BioOptic/PDFS/BOAS/Disserta.htm .
  11. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  12. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas and Applications (Academic, New York, 1980), Vol. 2.
  13. M. N. Berberan-Santos, “Beer’s law revisited,” J. Chem. Educ. 67, 757–759 (1990). [CrossRef]
  14. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [CrossRef]
  15. L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
  16. L. Wang, S. L. Jacques, MCML: Monte Carlo software package, http://omlc.ogi.edu/software/mc/index.html .
  17. T. Spott, L. O. Svaasand, R. E. Anderson, P. F. Schmedling, “Application of optical diffusion theory to transcutaneous bilirubinometry,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, G. P. Delacretaz, G. Godlewski, R. Pini, R. W. Steiner, O. Svaasand, eds., Proc. SPIE3195, 234–245 (1997). [CrossRef]
  18. I. S. Saidi, S. L. Jacques, F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995). [CrossRef] [PubMed]
  19. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989). [CrossRef] [PubMed]
  20. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).
  21. S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte Carlo—diffusion theory modelling of light distributions in tissue,” in Laser Interaction with Tissue, W. M. Berns, ed., Proc. SPIE908, 20–28 (1988). [CrossRef]
  22. L. Wang, S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993). [CrossRef]
  23. W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988). [CrossRef] [PubMed]
  24. W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” in Dosimetry of Laser Radiation in Medicine and Biology, (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), Vol. IS5, pp. 146–154.
  25. W. E. Meador, W. R. Weaver, “Diffusion approximation for large absorption in radiative transfer,” Appl. Opt. 18, 1204–1208 (1979). [CrossRef] [PubMed]
  26. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  27. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 6, pp. 131–206. [CrossRef]
  28. S. A. Prahl, “Light transport in tissue,” Ph.D. dissertation (The University of Texas at Austin, Austin, Texas, 1988), http://omlc.ogi.edu/pubs/prahl-pubs/index.html .
  29. V. Venugopalan, J. S. You, B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58, 2395–2407 (1998). [CrossRef]
  30. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990).
  31. W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. C. J. van Gemert, eds. (Plenum, New York, 1995), pp. 275–302.
  32. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt. 28, 5243–5249 (1989). [CrossRef] [PubMed]
  33. J. A. Parrish, “New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window,” J. Invest. Dermatol. 77, 45–50 (1981). [CrossRef] [PubMed]
  34. I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Verlag Harri Deutsch, Thun und Frankfurt/Main, 1981).
  35. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables (Dover, New York, 1974).
  36. J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited