OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6466–6486

Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography

Christoph H. Schmitz, Harry L. Graber, Hengbin Luo, Imran Arif, Jai Hira, Yaling Pei, Avraham Bluestone, Sheng Zhong, Randy Andronica, Ira Soller, Nestor Ramirez, San-Lian S. Barbour, and Randall L. Barbour  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6466-6486 (2000)
http://dx.doi.org/10.1364/AO.39.006466


View Full Text Article

Enhanced HTML    Acrobat PDF (3407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Instrumentation is described that is suitable for acquiring multisource, multidetector, time-series optical data at high sampling rates (up to 150 Hz) from tissues having arbitrary geometries. The design rationale, calibration protocol, and measured performance features are given for both a currently used, CCD-camera-based instrument and a new silicon-photodiode-based system under construction. Also shown are representative images that we reconstructed from data acquired in laboratory studies using the described CCD-based instrument.

© 2000 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5380) Medical optics and biotechnology : Physiology

History
Original Manuscript: June 8, 2000
Published: December 1, 2000

Citation
Christoph H. Schmitz, Harry L. Graber, Hengbin Luo, Imran Arif, Jai Hira, Yaling Pei, Avraham Bluestone, Sheng Zhong, Randy Andronica, Ira Soller, Nestor Ramirez, San-Lian S. Barbour, and Randall L. Barbour, "Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography," Appl. Opt. 39, 6466-6486 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Exp. 4, 287–298 (1999). [CrossRef]
  2. B. W. Pogue, M. Testorf, T. Mcbride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997). [CrossRef]
  3. B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” in Advances in Optical Biopsy and Optical MammographyR. R. Alfano, ed., Ann. N. Y. Acad. Sci.838, 29–45 (1998). [CrossRef]
  4. R. L. Barbour, R. Andronica, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPTIscanner, a general-purpose optical tomographic imaging system,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 251–255.
  5. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999). [CrossRef]
  6. Y. Yamashita, A. Maki, H. Koizumi, “Measurement system for noninvasive dynamic optical topography,” J. Biomed. Opt. 4, 414–417 (1999). [CrossRef] [PubMed]
  7. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
  8. H. Rinneberg, D. Grosenick, H. Wabnitz, H. Danlewski, K. Moesta, P. Schlag, “Time-domain optical mammography: results on phantoms, healthy volunteers, and patients,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1998), pp. 278–280.
  9. R. J. Grable, P. D. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
  10. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunasawa, M. Takada, Y. Tsuchiya, Y. Yamashira, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multi-channel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999). [CrossRef]
  11. H. L. Graber, R. L. Barbour, J. Chang, “Algebraic reconstruction of images of a diffusive medium containing strong absorbers: comparative study of different illumination schemes and the effect of restricted view angle,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 431–447 (1995). [CrossRef]
  12. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  13. Y. Pei, F.-B. Lin, R. L. Barbour, “Modeling of sensitivity and resolution to an included object in homogeneous scattering media and in MRI-derived breast maps,” Opt. Exp. 5, 203–219 (1999). [CrossRef]
  14. B. W. Pogue, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp. 4, 270–286 (1999). [CrossRef]
  15. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  16. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, 41–93 (1999). [CrossRef]
  17. S. Conolly, A. Macovski, J. Pauly, J. Schenk, K. K. Kwong, D. A. Chesler, X. Hu, W. Chen, M. Patel, K. Ugurbil, “Magnetic resonance imaging,” in The Biomedical Engineering Handbook, 2nd ed., J. D. Bronzino, ed. (CRC Press, Boca Raton, Fla., 2000), Chap. 63.
  18. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreiss, G. Schmelzeisen-Redeker, D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997). [CrossRef] [PubMed]
  19. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. Corballis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995). [CrossRef] [PubMed]
  20. D. A. Boas, A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A. 14, 192–215 (1997). [CrossRef]
  21. J. B. West, ed., Best and Taylor’s Physiological Basis of Medical Practice, 11th ed. (Williams and Wilkins, Baltimore, Md., 1985).
  22. C. R. Honig, C. L. Odoroff, J. L. Frierson, “Capillary recruitment in exercise: rate, extent, uniformity and relation to blood flow,” Am. J. Physiol. 238, H31–H42 (1980). [PubMed]
  23. Y. Kakihana, M. Kessler, A. Krug, H. Yamada, T. Oda, N. Yoshimura, “Dynamic changes in intracapillary hemoglobin oxygenation in human skin following various temperature changes,” Microvasc. Res. 56, 104–112 (1998). [CrossRef] [PubMed]
  24. S. Sundberg, M. Castrén, “Drug- and temperature-induced changes in peripheral circulation measured by laser-Doppler flowmetry and digital-pulse plethysmography,” Scand. J. Clin. Lab. Invest. 46, 359–365 (1986). [CrossRef] [PubMed]
  25. R. B. King, G. M. Raymond, J. B. Bassingthwaighte, “Modeling blood flow heterogeneity,” Ann. Biomed. Eng. 24, 352–372 (1996). [CrossRef] [PubMed]
  26. S. Bertuglia, A. Colantuoni, M. Arnold, H. Witte, “Dynamic coherence analysis of vasomotion and flow motion in skeletal muscle microcirculation,” Microvasc. Res. 52, 235–244 (1996). [CrossRef] [PubMed]
  27. J. Ross, “Structure-function relations in the peripheral circulation,” Chap. 6 in Ref. 21.
  28. R. Bannister, ed., Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System, 2nd ed. (Oxford U. Press, London, 1988).
  29. R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Y. Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear imaging for medical applications,” in Advances in Optical Biopsy and Optical MammographyR. R. Alfano, ed., Ann. N. Y. Acad. Sci.838, 14–28 (1998).
  30. V. Chernomordik, D. Hattery, A. H. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, J. C. Hebden, “Quantitative imaging in time-resolved transillumination experiments using time-dependent contrast functions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 398–402 (1999). [CrossRef]
  31. C. S. Hoberman, “Reversibly expandable three-dimensional structure,” U.S. patent4,780,344 (25October1988).
  32. P. J. Rousseeuw, “Robust estimation and identifying outliers,” in Handbook of Statistical Methods for Engineers and Scientists, H. M. Wadsworth, ed. (McGraw-Hill, New York, 1990), Chap. 16.
  33. Y. M. M. Bishop, S. E. Fienberg, P. W. Holland, “Maximum likelihood estimates for complete tables,” in Discrete Multivariate Analysis: Theory and Practice (MIT, Cambridge, Mass., 1991), Chap. 3.
  34. E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992). [CrossRef] [PubMed]
  35. “Photodiode monitoring with op amps,” (Burr-Brown Corp., 6730 S. Tucson Blvd., Tucson, Ariz., 1995).
  36. “Photodiodes,” (Hamamatsu Photonics, Bridgewater, N.J. 08807, 1998).
  37. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  38. I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989). [CrossRef]
  39. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  40. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  41. O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (Royal Vangorcum Ltd., Assen, The Netherlands, 1970).
  42. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988). [CrossRef] [PubMed]
  43. Y. Pei, “Optical tomographic imaging using finite element method,” Ph.D. dissertation (Polytechnic University, Brooklyn, N.Y., 1999).
  44. Y. Pei, H. L. Graber, R. L. Barbour are preparing a manuscript to be called “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging.”
  45. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz are preparing a manuscript to be called “Optical tomographic imaging of dynamic features of dense-scattering media.”
  46. S. Blattman, H. L. Graber, S. Zhong, Y. Pei, J. Hira, I. Arif, R. L. Barbour, “Imaging of differential reactivity of the vascular tree in the human forearm by optical tomography,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 458–460.
  47. R. L. Barbour, S. Blattman, T. Panetta, “Dynamic optical tomography: a new approach for investigating tissue–vascular coupling in large tissue structures,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 336–338.
  48. L. Glass, M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University, Princeton, N.J., 1988).
  49. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical imhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997). [CrossRef] [PubMed]
  50. J. Chang, W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, “Regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” J. Opt. Soc. Am. A 14, 306–312 (1997). [CrossRef]
  51. S. Bartel, G. Abdoulaev, A. H. Hielscher, “Parallelization of gradient-based iterative image reconstruction scheme,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Phototonics Series (Optical Society of America, Washington, D.C., 2000), pp. 433–435.
  52. S. Nioka, M. Miwa, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” in Oxygen Transport to Tissue XVI, Vol. 361 of Advances in Experimental Medicine and Biology, M. C. Hogan, O. Mathieu-Costello, D. C. Poole, P. D. Wagner, eds. (Plenum, New York, 1994), pp. 171–179.
  53. S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light source,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 809–817 (1995). [CrossRef]
  54. H. L. Graber, R. Aronson, R. L. Barbour are preparing a manuscript to be called “Dependence of object sensitivity and resolution on optical thickness of scattering media.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited