OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6487–6497

Quantifying the Absorption and Reduced Scattering Coefficients of Tissuelike Turbid Media Over a Broad Spectral Range with Noncontact Fourier-Transform Hyperspectral Imaging

Tuan H. Pham, Frederic Bevilacqua, Thorsten Spott, Jan S. Dam, Bruce J. Tromberg, and Stefan Andersson-Engels  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6487-6497 (2000)
http://dx.doi.org/10.1364/AO.39.006487


View Full Text Article

Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorption (μa) and reduced scattering (μs) spectra of turbid media were quantified with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded hyperspectral images to quantify μa and μs spectra in the 550–850-nm region. A simple and effective calibration approach was introduced to account for the instrument response. With reflectance data that were close to and far from the source (0.5–6.5 mm), μa and μs of homogeneous, semi-infinite turbid phantoms with optical property ranges comparable with those of tissues were determined with an accuracy of ∓7% and ∓3%, respectively. Prediction accuracy for μa and μs degraded to ∓12% and ∓4%, respectively, when only reflectance data close to the source (0.5–2.5 mm) were used. Results indicate that reflectance data close to and far from the source are necessary for optimal quantification of μa and μs. The spectral properties of μa and μs values were used to determine the concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-chromophore turbid media were determined with an accuracy of ∓5% and ∓3%, respectively.

© 2000 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

Citation
Tuan H. Pham, Frederic Bevilacqua, Thorsten Spott, Jan S. Dam, Bruce J. Tromberg, and Stefan Andersson-Engels, "Quantifying the Absorption and Reduced Scattering Coefficients of Tissuelike Turbid Media Over a Broad Spectral Range with Noncontact Fourier-Transform Hyperspectral Imaging," Appl. Opt. 39, 6487-6497 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6487


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. J. Tromberg, R. C. Haskell, S. J. Madsen, and L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1995).
  2. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy,” J. Appl. Physiol. 77, 2753–2760 (1994).
  3. B. Chance, “Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation,” Ann. N. Y. Acad. Sci. 838, 29–45 (1998).
  4. J. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini-Fantini, and E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
  5. R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
  6. N. Mohandas, Y. R. Kim, D. H. Tycko, J. Orlik, J. Wyatt, and W. Groner, “Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering,” Blood 68, 506–513 (1986).
  7. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
  8. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
  9. F. Bevilacqua, P. Marquet, O. Coquoz, and C. Depeursinge, “Role of tissue structure in photon migration through breast tissues,” Appl. Opt. 36, 44–51 (1997).
  10. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995).
  11. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  12. R. Doornbos, R. Lang, M. Aalders, F. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially-resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
  13. E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
  14. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
  15. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
  16. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, and F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. ISII of SPIE Institute Series (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.
  17. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
  18. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
  19. R. Splinter, G. A. Nanney, L. Littman, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, and G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).
  20. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
  21. F. Bevilacqua, “Local optical characterization of biological tissues in vitro and in vivo,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Lausanne, Switzerland, 1998).
  22. V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source–detector separations,” Phys. Rev. E 58, 2395–2407 (1998).
  23. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
  24. L. O. Svaasand, B. J. Tromberg, P. Wyss, M.-T. Wyss-Desserich, Y. Tadir, and M. W. Berns, “Light and drug distribution with topically administered photosensitizers,” Lasers Med. Sci. 11, 261–265 (1996).
  25. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
  26. M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
  27. P. Marquet, F. Bevilacqua, C. Depeursinge, and E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
  28. D. M. Haaland, H. D. T. Jones, and E. V. Thomas, “Multivariate classification of the infrared spectra of cell and tissue samples,” Appl. Spectrosc. 51, 340–345 (1997).
  29. H. Key, R. E. Davies, P. C. Jackson, and P. N. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
  30. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
  31. W. H. Steel, Interferometry (Cambridge University Press, Cambridge, 1983).
  32. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990).
  33. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
  34. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (2000).
  35. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
  36. The MathWorks, Inc., MATLAB Reference Guide (MathWorks, Natick, Mass., 1994).
  37. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, New York, 1974).
  38. J. S. Dam, P. E. Andersen, T. Dalgaard, and P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
  39. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
  40. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
  41. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited