OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6498–6507

Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods

Frédéric Bevilacqua, Andrew J. Berger, Albert E. Cerussi, Dorota Jakubowski, and Bruce J. Tromberg  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6498-6507 (2000)
http://dx.doi.org/10.1364/AO.39.006498


View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain (FD) and steady-state (SS) reflectance methods is presented. Most of the wavelength coverage is provided by a white-light SS measurement, whereas the FD data are acquired at a few selected wavelengths. Coefficients of absorption (μ a ) and reduced scattering (μs) derived from the FD data are used to calibrate the intensity of the SS measurements and to estimate μs at all wavelengths in the spectral window of interest. After these steps are performed, one can determine μ a by comparing the SS reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined SSFD technique, agree well with expected reference values. All measurements can be performed at a single source–detector separation distance, reducing the variations in sampling volume that exist in multidistance methods. The technique uses relatively inexpensive light sources and detectors and is easily implemented on an existing multiwavelength FD system.

© 2000 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4090) Medical optics and biotechnology : Modulation techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: April 26, 2000
Revised Manuscript: August 18, 2000
Published: December 1, 2000

Citation
Frédéric Bevilacqua, Andrew J. Berger, Albert E. Cerussi, Dorota Jakubowski, and Bruce J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  2. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite medium,” J. Opt. Soc. Am. 14, 246–254 (1997). [CrossRef]
  3. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999). [CrossRef]
  4. B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994). [CrossRef] [PubMed]
  5. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995). [CrossRef]
  6. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  7. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000). [CrossRef]
  8. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976). [CrossRef] [PubMed]
  9. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  10. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  11. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  12. R. A. Weersink, J. Hayward, K. Diamond, M. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  13. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999). [CrossRef]
  14. E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-stimulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998). [CrossRef] [PubMed]
  15. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999). [CrossRef] [PubMed]
  16. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. London 352, 661–668 (1997).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, Orlando, Fla., 1978).
  18. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. 10, 127–140 (1993). [CrossRef]
  19. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993). [CrossRef] [PubMed]
  20. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994). [CrossRef] [PubMed]
  21. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. 11, 2727–2741 (1994). [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, in Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, 1993), Chap. 15, pp. 683–688.
  23. R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef] [PubMed]
  24. J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef] [PubMed]
  25. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998). [CrossRef]
  26. L. H. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32, 3531–3540 (1993). [CrossRef] [PubMed]
  27. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. O. R. Reynolds, “Characterization of the near-infrared absorption spectra of cytochrome-AA3 and hemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988). [CrossRef] [PubMed]
  28. C. Eker, Optical Characterization of Tissue for Medical Diagnostics, Ph.D. dissertation (Lund University, Lund, Sweden, 1999).
  29. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  30. A. J. Berger, T.-W. Koo, I. Itzkan, M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–628 (1998). [CrossRef] [PubMed]
  31. G. Alexandrakis, T. J. Farrell, M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7409 (1998). [CrossRef]
  32. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited