OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6508–6514

Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation

Murat Canpolat and Judith R. Mourant  »View Author Affiliations


Applied Optics, Vol. 39, Issue 34, pp. 6508-6514 (2000)
http://dx.doi.org/10.1364/AO.39.006508


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a noninvasive method to track the concentration of photodynamic therapy drugs in real time. The method is based on measurements of backscattered and fluorescent light with a steady-state fluorescence spectrometer. The ratio of the fluorescent light to the scattered light is found to be linearly proportional to the absorption coefficient of the photosensitizer. The fiber-optic probe used for the measurements has a small source–detector separation; therefore the measurements could be performed through the working channel of an endoscope.

© 2000 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5180) Medical optics and biotechnology : Photodynamic therapy

History
Original Manuscript: June 8, 2000
Revised Manuscript: August 28, 2000
Published: December 1, 2000

Citation
Murat Canpolat and Judith R. Mourant, "Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation," Appl. Opt. 39, 6508-6514 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Braichotte, J.-F. Savary, T. Glazmann, P. Monnier, G. Wagnieres, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of bronchi by fluorescence spectroscopy,” Lasers Med. Sci. 11, 247–254 (1996). [CrossRef]
  2. D. R. Braichotte, J.-F. Savary, P. Monnier, H. van den Berg, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996). [CrossRef] [PubMed]
  3. B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12, 182–189 (1997). [CrossRef] [PubMed]
  4. F. Guillemin, O. A’Amar, H. Rezzoug, D. Lignon, F. Jaffry, C. Abdulnour, L. Muller, E. Yvround, J. L. Merlin, Y. Granjon, L. Bolotina-Bezdetnaya, N. Zeghari, K. Khemis, M. Barberi-Heyob, A. Meunier-Reynes, A. Potapenko, D. Notter, C. Vigneron, “Optical instrumentation suitable for real time dosimetry during photodynamic therapy,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 92–99 (1995). [CrossRef]
  5. A. J. Durkin, R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996). [CrossRef] [PubMed]
  6. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting fluorescence in turbid media,” Appl Opt. 19, 3585–3595 (1993). [CrossRef]
  7. M. Canpolat, J. R. Mourant, “Quantifying the importance of high angle scattering events to light-transport through turbid media measured in a backscattered geometry,” Phys. Med. Biol. 45, 1–14 (2000). [CrossRef]
  8. S. Avriller, E. Tinet, D. Ettori, J.-M. Tualle, B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998). [CrossRef]
  9. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  10. B. W. Pogue, T. Hasan, “Fluorophore quantification in tissue-simulating media with confocal detection,” IEEE J. Sel. Top. Quantum Electron. 2, 959–963 (1996). [CrossRef]
  11. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  12. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  13. J. R. Mourant, I. J. Bigio, D. A . Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
  14. J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurement,” Phys. Med. Biol. 44, 1397–1417 (1999). [CrossRef] [PubMed]
  15. C. R. Cantor, P. R. Schimmel, Biophysical Chemistry Part II (Freeman, New York, 1980), p. 364.
  16. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  17. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996). [CrossRef] [PubMed]
  18. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100. [CrossRef]
  19. R. van Hillegersberg, J. W. Pickering, M. Aalders, J. F. Beek, “Optical properties of rat liver and tumor at 633 nm and 1064 nm: photofrin enhances scattering,” Lasers Surg. Med. 13, 31–39 (1993). [CrossRef] [PubMed]
  20. G. Wagniers, S. Cheng, M. Zellwegar, N. Utke, D. Braichotte, J.-P. Ballini, H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited