OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 35 — Dec. 10, 2000
  • pp: 6595–6601

Encrypting three-dimensional information with digital holography

Enrique Tajahuerce and Bahram Javidi  »View Author Affiliations


Applied Optics, Vol. 39, Issue 35, pp. 6595-6601 (2000)
http://dx.doi.org/10.1364/AO.39.006595


View Full Text Article

Enhanced HTML    Acrobat PDF (1783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for optical encryption of three-dimensional (3D) information by use of digital holography is presented. A phase-shifting interferometer records the phase and amplitude information generated by a 3D object at a plane located in the Fresnel diffraction region with an intensity-recording device. Encryption is performed optically by use of the Fresnel diffraction pattern of a random phase code. Images of the 3D object with different perspectives and focused at different planes can be generated digital or optically after decryption with the proper key. Experimental results are presented.

© 2000 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(090.1760) Holography : Computer holography
(100.6890) Image processing : Three-dimensional image processing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(150.6910) Machine vision : Three-dimensional sensing
(200.3050) Optics in computing : Information processing

History
Original Manuscript: April 20, 2000
Revised Manuscript: August 14, 2000
Published: December 10, 2000

Citation
Enrique Tajahuerce and Bahram Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-35-6595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-Y. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993). [CrossRef] [PubMed]
  2. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  3. Ph. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef] [PubMed]
  4. C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997). [CrossRef]
  5. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998). [CrossRef]
  6. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  7. J. E. Ford, Y. Fainman, S. H. Lee, “Array interconnection by phase-coded optical correlation,” Opt. Lett. 15, 1088–1090 (1990). [CrossRef] [PubMed]
  8. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991). [CrossRef]
  9. H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993). [CrossRef]
  10. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995). [CrossRef] [PubMed]
  11. C. Denz, K. O. Mueller, F. Visinka, T. T. Tschudi, “Digital volume holographic data storage using phase-coded multiplexing,” Proc. SPIE. 3802, 142–147 (1999). [CrossRef]
  12. C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  14. U. Schnars, W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  15. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  16. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  17. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  18. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. XXVIII, pp. 271–359. [CrossRef]
  19. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  20. B. Javidi, T. Nomura, “Securing information by means of digital holography,” Opt. Lett. 25, 28–30 (2000). [CrossRef]
  21. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000). [CrossRef]
  22. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited