OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 35 — Dec. 10, 2000
  • pp: 6689–6694

Secure Optical Storage that Uses Fully Phase Encryption

Xiaodi Tan, Osamu Matoba, Tsutomu Shimura, Kazuo Kuroda, and Bahram Javidi  »View Author Affiliations


Applied Optics, Vol. 39, Issue 35, pp. 6689-6694 (2000)
http://dx.doi.org/10.1364/AO.39.006689


View Full Text Article

Acrobat PDF (2626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A secure holographic memory system that uses fully phase encryption is presented. Two-dimensional arrays of data are phase encoded. Each array is then transformed into a stationary white-noise-like pattern by use of a random-phase mask located at the input plane and another at the Fourier plane. This encrypted information is then stored holographically in a photorefractive LiNbO3:Fe crystal. The original phase-encoded data can be recovered, by use of the two random-phase masks, with a phase-conjugate readout beam. This phase information can then be converted back to intensity information with an interferometer. Recording multiple images by use of angular multiplexing is demonstrated. The influence of a limited system bandwidth on the quality of reconstructed data is evaluated numerically. These computer simulation results show that a fully phase-based encryption system generally performs better than an amplitude-based encryption system when the system bandwidth is limited by a moderate amount.

© 2000 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(190.5330) Nonlinear optics : Photorefractive optics
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories

Citation
Xiaodi Tan, Osamu Matoba, Tsutomu Shimura, Kazuo Kuroda, and Bahram Javidi, "Secure Optical Storage that Uses Fully Phase Encryption," Appl. Opt. 39, 6689-6694 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-35-6689


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 11, 915–917 (1993).
  2. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
  3. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
  4. F. Zhao and K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
  5. Y. H. Kang, K. H. Kim, and B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
  6. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
  7. S. Lai, “Security holograms using an encoded reference wave,” Opt. Eng. 35, 2740–2742 (1996).
  8. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058 (1997).
  9. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
  10. O. Matoba and B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
  11. G. Unnikrishnan, J. Joesph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
  12. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
  13. B. Javidi, A. Sergent, G. Zhang, and L. Guibert, “Fault tolerance properties of a double phase encoding encryption technique,” Opt. Eng. 36, 992–998 (1997).
  14. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998).
  15. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999).
  16. H. Lee, X. Gu, and D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
  17. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
  18. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
  19. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  20. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993).
  21. I. Moreno, J. A. Davis, K. G. D’Nelly, and D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited