OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 35 — Dec. 10, 2000
  • pp: 6695–6701

Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media

Ewan M. Wright, Pramod K. Khulbe, and Masud Mansuripur  »View Author Affiliations

Applied Optics, Vol. 39, Issue 35, pp. 6695-6701 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theory of the crystallization dynamics of Ge2Sb2.3Te5 thin films that shows good qualitative agreement with experimental reflectivity results from a two-laser static tester. The theory is adapted from the nucleation theory of liquid droplets from supersaturated vapor and elucidates the physics underlying the amorphous-to-crystalline phase transformation under short-pulse excitation. In particular, the theory provides a physical picture in which crystalline islands, or basic embryos, are thermally activated in the amorphous material and subsequently grow as stable nuclei are formed.

© 2000 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks
(210.4770) Optical data storage : Optical recording
(210.4810) Optical data storage : Optical storage-recording materials

Original Manuscript: February 23, 2000
Revised Manuscript: September 5, 2000
Published: December 10, 2000

Ewan M. Wright, Pramod K. Khulbe, and Masud Mansuripur, "Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media," Appl. Opt. 39, 6695-6701 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Feinlib, J. deNeufville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971). [CrossRef]
  2. I. Satoh, S. Ohara, N. Akahira, M. Takenaga, “Key technology for high density rewritable DVD (DVD-RAM),” IEEE Trans. Magn. 34, 337–342 (1998). [CrossRef]
  3. H. Yasuoka, M. Ojjima, M. Terao, T. Nishida, “Novel 1-beam-overwriting method for phase-change erasable disk,” Jpn. J. Appl. Phys. Suppl. 26-4, 171–176 (1987).
  4. D. J. Gravesteijn, “Materials developments for write-once and erasable phase-change optical recording,” Appl. Opt. 27, 736–738 (1988). [CrossRef] [PubMed]
  5. H. Minemura, H. Andoh, N. Tsuboi, Y. Maeda, Y. Sato, “Three-dimensional analysis of overwritable phase-change optical disks,” J. Appl. Phys. 67, 2731–2735 (1990). [CrossRef]
  6. Y. Nakayoshi, Y. Kanemitsu, Y. Masumoto, Y. Maeda, “Dynamics of rapid phase transformations in amorphous GeTe induced by nanosecond laser pulses,” Jpn. J. Appl. Phys. Part 1 31, 471–475 (1992). [CrossRef]
  7. T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, “High sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S.-T. Tyan, eds., Proc. SPIE2514, 302–311 (1995). [CrossRef]
  8. Q. M. Lu, M. Libera, “Microstructural measurements of amorphous GeTe crystallization by hot-stage microscopy,” J. Appl. Phys. 77, 517–521 (1995). [CrossRef]
  9. Z. L. Mao, H. Chen, A.-L. Jung, “The structure and crystallization characteristics of phase-change optical disk material Ge1Sb2Te4,” J. Appl. Phys. 78, 2338–2342 (1995). [CrossRef]
  10. J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, “Laser-induced crystallization phenomena in Ge-Te based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78, 4906–4917 (1995). [CrossRef]
  11. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997). [CrossRef]
  12. P. K. Khulbe, E. W. Wright, M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88, 3926–3933 (2000). [CrossRef]
  13. K. F. Kelton, A. L. Greer, C. V. Thompson, “Transient nucleation in condensed systems,” J. Chem. Phys. 79, 6261–6276 (1983). [CrossRef]
  14. temprofile is a product of MM Research, Inc., Tucson, Arizona.
  15. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955), Chap. 7.
  16. J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Thermodynamic aspects,” Am. J. Phys. 30, 870–877 (1962). [CrossRef]
  17. J. E. McDonald, “Homogeneous nucleation of vapor condensation. I. Kinetic aspects,” Am. J. Phys. 31, 31–41 (1963). [CrossRef]
  18. See, for example, S. W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems (Springer-Verlag, Berlin, 1984), pp. 18–19.
  19. See, for example, D. Stroud, Van E. Wood, “Decoupling approximation for the nonlinear-optical response of composite media,” J. Opt. Soc. Am. B 6, 778–786 (1989).
  20. See, for example, H. A. McLeod, Thin Film Optical Filters (Macmillan, New York, 1986).
  21. The maximum cluster size used affects the numerical results qualitatively. Taking the basic embryo unit size as 1 nm yields a maximum spherical cluster in a 25-nm-thick sample of gmax ≈ 123. This is, however, an overestimate, and here we took gmax = 100.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited