OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6713–6724

Unified inversion scheme that uses light scattering for morphological parameters and optical properties of aggregated aerosols

Guocai Shu and Tryfon T. Charalampopoulos  »View Author Affiliations


Applied Optics, Vol. 39, Issue 36, pp. 6713-6724 (2000)
http://dx.doi.org/10.1364/AO.39.006713


View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A robust scheme for characterizing chainlike aggregated aerosols by use of nonintrusive light-scattering measurements is presented. This scheme entails the selection of suitable scattering quantities and their optimal measurement angles; the development of an inversion algorithm to yield the complex refractive index of agglomerates m = n + ik, the primary particle diameter d p , the number of primary particles per agglomerate N p , the number density of agglomerates n A , and the volume fraction of agglomerates f v ; and evaluation of the uncertainties of the inferred parameters that correspond to measuring uncertainties. The data-inversion algorithm is based on the exact formulation of light scattering for agglomerates that consist of primary particles in the Rayleigh limit and therefore has solid theoretical foundations. In addition, this approach yields all the desired parameters of the aggregated aerosols by using in situ light-scattering measurements with a minimum of possible uncertainties. Furthermore, the methodology developed here can be extended to aerosols with other types of morphology and optical property.

© 2000 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.3200) Scattering : Inverse scattering
(290.5820) Scattering : Scattering measurements

History
Original Manuscript: January 6, 2000
Revised Manuscript: August 28, 2000
Published: December 20, 2000

Citation
Guocai Shu and Tryfon T. Charalampopoulos, "Unified inversion scheme that uses light scattering for morphological parameters and optical properties of aggregated aerosols," Appl. Opt. 39, 6713-6724 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-36-6713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulate in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992). [CrossRef]
  2. T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988). [CrossRef]
  3. B. J. Stagg, T. T. Charalampopoulos, “Refractive Indices of pyrolytic graphite, amorphous carbon and flame soot in the temperature range 25 degrees to 600 degrees C,” Combust. Flame 94, 381–396 (1993). [CrossRef]
  4. G. Mie, “Beitrage zur Optik trüber Medien speziell kolliodaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908). [CrossRef]
  5. W. D. Erickson, G. C. Williams, H. C. Hottel, “Light scattering measurements on soot in a benzene–air flame,” Combust. Flame 8, 127–132 (1964). [CrossRef]
  6. M. Kunugi, H. Jinno, “Determination of size and concentration of soot particles in diffusion flames by a light scattering technique,” in Eleventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1966), p. 257.
  7. W. H. Dalzell, G. C. Williams, H. C. Hottel, “A light scattering method for soot concentration measurements,” Combust. Flame 14, 161–170 (1970). [CrossRef]
  8. A. D’Alessio, A. Di Lorenzo, A. F. Sarofim, F. Beretta, S. Masi, C. Venitozzi, “Soot formation in methane–oxygen flames,” in Fifteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1975), p. 1427. [CrossRef]
  9. A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” in Sixteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1977), p. 695. [CrossRef]
  10. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  11. Z. Ulanowski, Z. Wang, P. H. Kaye, I. K. Ludlow, “Application of neural networks to the inverse light scattering problem for spheres,” Appl. Opt. 37, 4027–4033 (1998). [CrossRef]
  12. M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation (Academic, New York, 1969).
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  14. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
  16. J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Cryst. 20, 61–78 (1987). [CrossRef]
  17. R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991). [CrossRef] [PubMed]
  18. C. M. Sorensen, J. Cai, N. Liu, “Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992). [CrossRef] [PubMed]
  19. R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic process of soot aggregates in a laminar ethane diffusion flame,” Combust. Flame 92, 320–333 (1993). [CrossRef]
  20. Ü. Ö. Köylü, G. M. Faeth, “Optical properties of overfire soot in buoyant turbulent diffusion flames at long residence times,” J. Heat Transfer 116, 152–159 (1994). [CrossRef]
  21. Ü. Ö. Köylü, “Quantitative analysis of in-situ optical diagnostics for inferring particle/aggregates parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996). [CrossRef]
  22. G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995). [CrossRef]
  23. M. V. Berry, I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986). [CrossRef]
  24. J. Nelson, “Test of a mean field theory for the optics of fractal clusters,” J. Mod. Opt. 36, 1031–1057 (1989). [CrossRef]
  25. H. Y. Chen, M. F. Iskander, J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke aerosols,” J. Mod. Opt. 37, 171–181 (1990). [CrossRef]
  26. B. M. Vaglieco, F. Berretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990). [CrossRef]
  27. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 577–591 (1991). [CrossRef]
  28. R. Munoz, T. T. Charalampopoulos, “Evolution of compositional and structural properties of soot in premixed alkane flames,” in Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1471–1479. [CrossRef]
  29. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  30. B. T. Draine, P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  31. B. M. Vaglieco, O. Monda, F. E. Corcione, M. P. Mengüç, “Optical and radiative properties of particulates at diesel engine exhaust,” Combust. Sci. Technol. 102, 283–299 (1994). [CrossRef]
  32. A. R. Jones, “Electromagnetic wave scattering by assembles of particles in the Rayleigh approximation,” Proc. R. Soc. London Ser. A 366, 111–127 (1979). [CrossRef]
  33. A. R. Jones, “Scattering efficiency factors for agglomerates of small particles,” J. Phys. D 12, 1661–1671 (1979). [CrossRef]
  34. D. S. Saxon, Lecture on the Scattering of Light (University of California at Los Angeles, Los Angeles, Calif., 1974).
  35. T. T. Charalampopoulos, H. Chang, “Agglomerate parameters and fractal dimension of soot using light scattering—Effects on surface growth,” Combust. Flame 87, 88–99 (1991). [CrossRef]
  36. K. Kumar, C. L. Tien, “Effective diameter of agglomerates for radiative extinction and scattering,” Combust. Sci. Technol. 66, 199–216 (1989). [CrossRef]
  37. J. C. Ku, “Correction for the extinction efficiency factors given in the Jones solution for electromagnetic scattering by agglomerates of small spheres,” J. Phys. D 24, 71–75 (1991). [CrossRef]
  38. J. C. Ku, K. H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992). [CrossRef]
  39. M. F. Iskander, H. Y. Chen, J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989). [CrossRef] [PubMed]
  40. W. Lou, T. T. Charalampopoulos, “On the electromagnetic scattering and absorption of agglomerated small spherical particles,” J. Phys. D 27, 2258–2270 (1995). [CrossRef]
  41. G. H. Goedecke, S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27, 2431–2438 (1988). [CrossRef] [PubMed]
  42. W. Lou, T. T. Charalampopoulos, “On the inverse scattering problem for characterization of agglomerated particulates: partial derivative formulation,” J. Phys. D 28, 2585–2594 (1995). [CrossRef]
  43. Z. Zhang, T. T. Charalampopoulos, “Controlled combustion synthesis of nanosized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1857. [CrossRef]
  44. A. D’Alessio, “Laser light scattering and fluorescence diagnostics in rich flames,” in Particulate Carbon, Formation during Combustion, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981), pp. 207–256.
  45. D. T. Venizelos, “A study of the radiative properties of agglomerated flame particulates using light scattering, Ph.D. dissertation (Louisiana State University, Baton Rouge, La., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited