OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6761–6770

Shot noise in gravitational-wave detectors with Fabry–Perot arms

Torrey T. Lyons, Martin W. Regehr, and Frederick J. Raab  »View Author Affiliations

Applied Optics, Vol. 39, Issue 36, pp. 6761-6770 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Shot-noise-limited sensitivity is calculated for gravitational-wave interferometers with Fabry–Perot arms, similar to those being installed at the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Italian–French Laser Interferometer Collaboration (VIRGO) facility. This calculation includes the effect of nonstationary shot noise that is due to phase modulation of the light. The resulting formula is experimentally verified by a test interferometer with suspended mirrors in the 40-m arms.

© 2000 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(030.5260) Coherence and statistical optics : Photon counting
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: January 28, 2000
Revised Manuscript: September 12, 2000
Published: December 20, 2000

Torrey T. Lyons, Martin W. Regehr, and Frederick J. Raab, "Shot noise in gravitational-wave detectors with Fabry–Perot arms," Appl. Opt. 39, 6761-6770 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO—the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  2. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Ledenmat, P. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: a wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990). [CrossRef]
  3. K. Danzmann, H. Luck, A. Rudiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kuhne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkleff, A. Tunnermann, B. Willke, “GEO 600. A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  4. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  5. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988). [CrossRef]
  6. J. Mizuno, K. A. Strain, P. Nelson, J. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993). [CrossRef]
  7. K. X. Sun, M. M. Feyer, E. Gustafson, R. L. Byer, “Sagnac interferometer for gravitational-wave detection,” Phys. Rev. Lett. 76, 3053–3056 (1996). [CrossRef] [PubMed]
  8. R. W. P. Drever, G. M. Ford, J. Hough, I. M. Kerr, A. J. Munley, J. R. Pugh, N. A. Robertson, H. Ward, “A gravity-wave detector using optical cavity sensing,” in Ninth International Conference on General Relativity and Gravitation, E. Schmutzer, ed. (Cambridge U. Press, Cambridge, UK, 1983).
  9. R. W. P. Drever, “Interferometric detectors for gravitational radiation,” in Gravitational Radiation, N. Deruelle, T. Piran, eds. (North-Holland, Amsterdam, 1983), pp. 321–328.
  10. K. S. Thorne, “Gravitational radiation,” in 300 Years of Gravitation, S. W. Hawking, W. Israel, eds. (Cambridge U. Press, Cambridge, UK, 1987), Eq. 115, p. 424.
  11. J. Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988). [CrossRef]
  12. D. Shoemaker, P. Fritschel, J. Giaime, N. Christensen, R. Weiss, “Prototype Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 30, 3133–3138 (1991). [CrossRef] [PubMed]
  13. S. Whitcomb, R. Spero, “Shot noise in the Caltech 40 m interferometer,” (California Institute of Technology, Pasadena, Calif., 1985).
  14. T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991). [CrossRef] [PubMed]
  15. B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991). [CrossRef] [PubMed]
  16. N. Mio, K. Tsubono, “Observation of an effect due to nonstationary shot noise,” Phys. Lett. A 164, 255–258 (1992). [CrossRef]
  17. M. B. Gray, A. J. Stevenson, H. A. Bachor, D. E. McClelland, “Harmonic demodulation of nonstationary shot noise,” Opt. Lett. 18, 759–761 (1993). [CrossRef] [PubMed]
  18. P. Fritschel, G. Gonzalez, B. Lantz, P. Saha, M. Zucker, “High power interferometric measurement limited by quantum noise and application to detection of gravitational waves,” Phys. Rev. Lett. 80, 3181–3184 (1998). [CrossRef]
  19. M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry–Perot arms by frontal modulation,” Opt. Lett. 20, 1507–1509 (1995). [CrossRef] [PubMed]
  20. R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996). [CrossRef]
  21. The nth-order sideband transmission to the antisymmetric port is tn± = 1/2{exp[2i(k ± nK)l1] - exp[2i(k ± nK)l2]} where K equals the wave number at the modulation frequency. Let l = 1/2(l1 + l2). Then, neglecting unimportant phase factors and accounting for the carrier being on a dark fringe yieldtn±=1/2exp⁡ 2ik±nkl+δ/2−exp⁡2ik±nkl−δ/2=1/2exp⁡±inKδ−exp⁡(∓inKδ)=±i sin⁡ nα.
  22. W. A. Gardner, L. E. Franks, “Characterization of cyclostationary random signal processes,” IEEE Trans. Inf. Theory IT-21, 4–14 (1975). [CrossRef]
  23. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, San Francisco, Calif., 1991), pp. 373–374.
  24. T. Lyons, A. Kuhnert, F. J. Raab, J. E. Logan, D. Durance, R. E. Spero, S. Whitcomb, B. Kells, “Optical recombination of the 40-m interferometer,” (California Institute of Technology, Pasadena, Calif., 2000).
  25. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef] [PubMed]
  26. R. E. Spero, “In situ measurement of cavity parameters needed for calculating shot noise sensitivity,” (California Institute of Technology, Pasadena, Calif., 1994).
  27. Others have observed that illuminating the entire surface of a photodiode can cause such an effect, which can be eliminated if only the active region is illuminated (D. H. Shoemaker, Massachusetts Institute of Technology, Cambridge, Mass., personal communication, 1999.) In our case the laser beam illumination was well within the active region whereas the incandescent light illuminated the entire photodiode. Unfortunately we did not try changing the collimation of the incandescent light.
  28. Ref. 23, Eq. (10–17), p. 291.
  29. Ref. 23, Eq. (10–95), p. 313–314.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited