OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6806–6813

Single-mode operation of a broad-area semiconductor laser with an anamorphic external cavity: experimental and numerical results

Sylvain Mailhot, Yves Champagne, and Nathalie McCarthy  »View Author Affiliations


Applied Optics, Vol. 39, Issue 36, pp. 6806-6813 (2000)
http://dx.doi.org/10.1364/AO.39.006806


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The emission of high-power broad-area semiconductor lasers inherently contains many lateral modes that increase the beam divergence and reduce the spatial coherence. Elimination of higher-order lateral modes from the output beams of commercially available broad-area lasers will be beneficial in many applications of these lasers. Experimental results obtained with a broad-area laser coupled to an anamorphic external cavity are presented and are compared with the predictions from our numerical model. We have predicted and observed with the anamorphic external cavity a greatly improved discrimination against high-order lateral modes. The measurement of the spectrally resolved near-field intensity patterns provides much more comprehensive information on their longitudinal- and lateral-mode content than do observations of near-field and far-field beam intensity profiles. With a broad-area laser of 100-mW nominal power, it has been possible to extract 40% of the maximal power in a stable single-lateral and single-longitudinal mode regime.

© 2000 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers

History
Original Manuscript: June 19, 2000
Revised Manuscript: September 1, 2000
Published: December 20, 2000

Citation
Sylvain Mailhot, Yves Champagne, and Nathalie McCarthy, "Single-mode operation of a broad-area semiconductor laser with an anamorphic external cavity: experimental and numerical results," Appl. Opt. 39, 6806-6813 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-36-6806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Philipp-Rutz, “Spatially coherent radiation from an array of GaAs lasers,” Appl. Phys. Lett. 26, 475–477 (1975). [CrossRef]
  2. R. H. Rediker, R. P. Schloss, L. J. Van Ruyven, “Operation of individual diode lasers as a coherent ensemble controlled by a spatial filter within an external cavity,” Appl. Phys. Lett. 46, 133–135 (1985). [CrossRef]
  3. J. Yaeli, W. Streifer, D. R. Scifres, P. S. Cross, R. L. Thornton, R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89–91 (1985). [CrossRef]
  4. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, “Narrowing the far field of a Y-junction laser array using a customized spatial filter in an external cavity,” Appl. Phys. Lett. 52, 1560–1562 (1988). [CrossRef]
  5. V. Diadiuk, Z. L. Liau, J. N. Walpole, J. W. Caunt, R. C. Williamson, “External-cavity coherent operation of InGaAsP buried-heterostructure laser array,” Appl. Phys. Lett. 55, 2161–2163 (1989). [CrossRef]
  6. J. R. Andrews, T. L. Paoli, W. Streifer, R. D. Burnham, “Individual spatial modes of a phase-locked injection laser array observed through spectral selection and selected with an external mirror,” J. Appl. Phys. 58, 2777–2779 (1985). [CrossRef]
  7. A. Barthelemy, F. Louradour, V. Couderc, “Wavelength-tunable diffraction-limited operation of a standard high-power diode-laser array using an off-centred extended cavity,” Electron. Lett. 28, 2038–2040 (1992). [CrossRef]
  8. L. Goldberg, J. F. Weller, “Single lobe operation of a 40-element laser array in an external ring laser cavity,” Appl. Phys. Lett. 51, 871–873 (1987). [CrossRef]
  9. C. Chang-Hasnain, D. F. Welch, D. R. Scifres, J. R. Whinnery, A. Dienes, R. D. Burnham, “Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity,” Appl. Phys. Lett. 49, 614–616 (1986). [CrossRef]
  10. C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, A. Dienes, “High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity,” Appl. Phys. Lett. 50, 1465–1467 (1987). [CrossRef]
  11. J. R. Leger, G. Mowry, “External diode-laser-array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993). [CrossRef]
  12. L. Goldberg, J. F. Weller, “Narrow lobe emission of high power broad stripe laser in external resonator cavity,” Electron. Lett. 25, 112–114 (1989). [CrossRef]
  13. S. Mailhot, G. Rousseau, N. McCarthy, “Improvement of lateral-mode discrimination of wide stripe semiconductor lasers by using a profiled reflectivity external mirror,” in Proceedings of the International Conference on Lasers ’94 (Society for Quantum Electronics, McLean, Va., 1994), pp. 284–288.
  14. J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36, 4993–4998 (1997). [CrossRef] [PubMed]
  15. J.-F. Lepage, N. McCarthy, “Apodizing holographic gratings for dual-wavelength operation of broad-area semiconductor lasers,” Appl. Opt. 37, 8420–8425 (1998). [CrossRef]
  16. M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993). [CrossRef]
  17. J. Dellunde, A. Valle, K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996). [CrossRef]
  18. J. A. Ruff, A. E. Siegman, S. C. Wang, “Mode characteristics of broad area high power diode lasers in an external stable-unstable cavity,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 296–297.
  19. W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989). [CrossRef]
  20. B. W. Hakki, T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975). [CrossRef]
  21. G. P. Agrawal, “Fast-Fourier-transform based beam propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984). [CrossRef]
  22. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). [CrossRef]
  23. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970). [CrossRef] [PubMed]
  24. Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995). [CrossRef]
  25. A. E. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), pp. 805–811.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited