OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6830–6846

Radiative transfer solution for rugged and heterogeneous scene observations

Christophe Miesch, Xavier Briottet, Yann H. Kerr, and François Cabot  »View Author Affiliations


Applied Optics, Vol. 39, Issue 36, pp. 6830-6846 (2000)
http://dx.doi.org/10.1364/AO.39.006830


View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A physical algorithm is developed to solve the radiative transfer problem in the solar reflective spectral domain. This new code, Advanced Modeling of the Atmospheric Radiative Transfer for Inhomogeneous Surfaces (AMARTIS), takes into account the relief, the spatial heterogeneity, and the bidirectional reflectances of ground surfaces. The resolution method consists of first identifying the irradiance and radiance components at ground and sensor levels and then modeling these components separately, the rationale being to find the optimal trade off between accuracy and computation times. The validity of the various assumptions introduced in the AMARTIS model are checked through comparisons with a reference Monte Carlo radiative transfer code for various ground scenes: flat ground with two surface types, a linear sand dune landscape, and an extreme mountainous configuration. The results show a divergence of less than 2% between the AMARTIS code and the Monte Carlo reference code for the total signals received at satellite level. In particular, it is demonstrated that the environmental and topographic effects are properly assessed by the AMARTIS model even for situations in which the effects become dominant.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: December 13, 1999
Revised Manuscript: August 29, 2000
Published: December 20, 2000

Citation
Christophe Miesch, Xavier Briottet, Yann H. Kerr, and François Cabot, "Radiative transfer solution for rugged and heterogeneous scene observations," Appl. Opt. 39, 6830-6846 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-36-6830

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited