OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 36 — Dec. 20, 2000
  • pp: 6847–6865

Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region

Paolo Francesco Ambrico, Aldo Amodeo, Paolo Di Girolamo, and Nicola Spinelli  »View Author Affiliations


Applied Optics, Vol. 39, Issue 36, pp. 6847-6865 (2000)
http://dx.doi.org/10.1364/AO.39.006847


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (λ on and λ off ) to be used in DIAL measurements of several molecular species (HCl, CO, CO2, NO2, CH4, H2O, and O2). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.

© 2000 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: February 28, 2000
Revised Manuscript: August 11, 2000
Published: December 20, 2000

Citation
Paolo Francesco Ambrico, Aldo Amodeo, Paolo Di Girolamo, and Nicola Spinelli, "Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region," Appl. Opt. 39, 6847-6865 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-36-6847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Houghton, F. W. Taylor, C. D. Rodgers, eds., Remote Sounding of the Atmospheres (Cambridge U. Press, Cambridge, 1984).
  2. A. Cracknell, L. Hayes, Introduction to Remote Sensing (Taylor & Francis, London, 1993).
  3. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  4. M. Uchiumi, O. C. Chee, K. Muraoka, M. Maeda, O. Uchino, “Dial measurement of CH4, CO2, CO and N2O using a tunable IR source based on the Ti:sapphire laser,” presented at the International Laser Radar Conference, Sendai, Japan, 25–29 July 1994.
  5. J. Bösenberg, D. Brassington, P. C. Simon, eds., Instrument Development for Atmospheric Research and Monitoring (Springer-Verlag, Berlin, 1997). [CrossRef]
  6. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989). [CrossRef] [PubMed]
  7. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991). [CrossRef] [PubMed]
  8. I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976). [CrossRef]
  9. E. Remsberg, L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  10. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  11. N. Sugimoto, N. Sims, K. P. Chan, D. K. Killinger, “Eye-safe 2.1-µm Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15, 302–304 (1990). [CrossRef]
  12. S. Cha, K. P. Chan, D. K. Killinger, “Tunable 2.1-mm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991). [CrossRef] [PubMed]
  13. M. Vaidyanathan, D. K. Killinger, “Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements,” Appl. Opt. 33, 7747–7753 (1994). [CrossRef] [PubMed]
  14. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994). [CrossRef] [PubMed]
  15. N. Menyuk, D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987). [CrossRef] [PubMed]
  16. E. M. Patterson, D. W. Roberts, G. G. Gimmestad, “Initial measurements using a 1.54-µm, eye safe Raman shifted lidar,” Appl. Opt. 28, 4978–4981 (1989). [CrossRef] [PubMed]
  17. T. Kobayashi, Y. Enomoto, D. Hua, C. Galvez, T. Taira, “A compact, eye-safe lidar based on optical parametric oscillators for remote aerosl sensing,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 11–14. [CrossRef]
  18. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  19. A. Fix, G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 313–316. [CrossRef]
  20. T. D. Gardiner, M. J. T. Milton, F. Molero, P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansman, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 451–454. [CrossRef]
  21. G. Pappalardo, P. Ambrico, A. Amodeo, V. Berardi, A. Boselli, R. Capobianco, P. Di Girolamo, N. Spinelli, R. Velotta, “Multiparametric tunable Lidar system based on IR OPO laser sources,” in Lidar Atmospheric Monitoring, J. Wolf, ed., Proc. SPIE3104, 158–166 (1997). [CrossRef]
  22. R. T. H. Collis, P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151. [CrossRef]
  23. V. E. Zuev, “Laser light transmission through the atmosphere,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 29–69. [CrossRef]
  24. O. Svelto, Principles of Lasers (Plenum, New York, 1989).
  25. G. Megie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980). [CrossRef] [PubMed]
  26. V. Wulfmeyer, J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998). [CrossRef]
  27. G. J. Megie, G. Ancellet, J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985). [CrossRef] [PubMed]
  28. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  29. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), pp. 213–305.
  30. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  31. J. Bösenberg, “Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985). [CrossRef] [PubMed]
  32. B. E. Grossmann, E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  33. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989). [CrossRef]
  34. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwind, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “User guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  35. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. Chance, K. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS: 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  36. A. C. Stern, ed., Air Pollution, 3rd, Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976).
  37. G. Franzinetti, FISIA S.p.A., Via Acqui 86, I-10090 Cascine Vica Rivoli, Italy (personal communication, 1998).
  38. G. H. Strom, “Transport and diffusion of stack effluents,” in Air Pollution, 3rd ed., A. C. Stern, ed., Vol. I of Air Pollutants, Their Transformation and Transport (Academic, New York, 1976), pp. 401–501.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited