OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 4 — Feb. 1, 2000
  • pp: 494–501

Plastic bending of sapphire fibers for infrared sensing and power-delivery applications

Limin Tong, Yonghang Shen, Fangming Chen, and Linhua Ye  »View Author Affiliations


Applied Optics, Vol. 39, Issue 4, pp. 494-501 (2000)
http://dx.doi.org/10.1364/AO.39.000494


View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sapphire fibers with diameters of 325–850 µm were plastically bent by CO2 laser beams with typical bending radii as small as 2.8 mm. The additional optical loss caused by a single bend was less than 0.1 dB (at 900 nm), the damage threshold of the bent fibers was higher than 150 MW/cm2 for Nd:YAG laser pulses, and the high mechanical strength of the bending area was also proved. Several successful applications of bent sapphire fibers have shown that plastically bent sapphire fibers are promising for use in IR sensing and power-delivery applications.

© 2000 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(140.3390) Lasers and laser optics : Laser materials processing
(160.2290) Materials : Fiber materials
(160.4760) Materials : Optical properties

History
Original Manuscript: May 24, 1999
Revised Manuscript: September 17, 1999
Published: February 1, 2000

Citation
Limin Tong, Yonghang Shen, Fangming Chen, and Linhua Ye, "Plastic bending of sapphire fibers for infrared sensing and power-delivery applications," Appl. Opt. 39, 494-501 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-4-494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Magel, D. H. Jundt, M. M. Fejer, R. L. Byer, “Low-loss single-crystal sapphire optical fibers,” in Infrared Optical Materials and Fibers IV, P. Klocek, ed., Proc. SPIE618, 89–94 (1986). [CrossRef]
  2. R. K. Numbling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997). [CrossRef]
  3. L. Tong, “High-temperature single-crystal fibers and fiber-optic sensors for high-temperature,” Ph.D. dissertation (Zhejiang University, Hangzhou, China, 1997).
  4. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993). [CrossRef] [PubMed]
  5. H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of single-crystal a-Al2O3 fibres grown by the laser-heated pedestal technique,” J. Mater. Sci. Lett. 10, 1428–1429 (1991). [CrossRef]
  6. G. N. Morscher, H. Sayir, “Bend properties of sapphire fibers at elevated temperatures. I. Bend survivability,” Mater. Sci. Eng. A 190, 267–274 (1995). [CrossRef]
  7. H. Sayir, A. Sayir, K. P. D. Lagerlof, “Temperature dependent brittle fracture of undoped and impurity dopped sapphire fibers,” Ceram. Eng. Sci. Proc. 14, 581–589 (1993). [CrossRef]
  8. S. J. Schneider, ed., Engineered Materials Handbook (ASM International, Materials Park, Ohio, 1992), Vol. 4, p. 752.
  9. A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 35–42 (1996). [CrossRef]
  10. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993). [CrossRef] [PubMed]
  11. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Er:YAG laser energy,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1995). [CrossRef]
  12. M. Dong, L. Tong, Z. Ding, “Loss measurement for SCF materials,” in Fiber Optic Materials and Components, R. A. Greenwell, D. K. Paul, H. H. Yuce, eds., Proc. SPIE2290, 378–386 (1994). [CrossRef]
  13. L. Tong, Y. Shen, L. Ye, “Performance improvement of sapphire fiber-optic sensor using a U-shaped reference fiber,” in Optical and Fiber Optic Sensor Systems, K. D. Bennett, S. Huang, D. A. Jackson, eds., Proc. SPIE3555, 236–243 (1998). [CrossRef]
  14. L. Tong, Y. Shen, L. Ye, “Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber,” Sens. Actuators A 75, 35–40 (1999). [CrossRef]
  15. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, J. R. Dugan, “Sapphire optical fibers for the delivery of erbium:YAG laser energy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 60–70 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited