Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Liquid-crystal-display projector-based modulation transfer function measurements of charge-coupled-device video camera systems

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate the ability to measure the system modulation transfer function (MTF) of both color and monochrome charge-coupled-device (CCD) video camera systems with a liquid-crystal-display (LCD) projector. Test matrices programmed to the LCD projector were chosen primarily to have a flat power spectral density (PSD) when averaged along one dimension. We explored several matrices and present results for a matrix produced with a random-number generator, a matrix of sequency-ordered Walsh functions, a pseudorandom Hadamard matrix, and a pseudorandom uniformly redundant array. All results are in agreement with expected filtering. The Walsh matrix and the Hadamard matrix show excellent agreement with the matrix from the random-number generator. We show that shift-variant effects between the LCD array and the CCD array can be kept small. This projector test method offers convenient measurement of the MTF of a low-cost video system. Such characterization is useful for an increasing number of machine vision applications and metrology applications.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Modulation transfer function of charge-coupled devices

John C. Feltz and Mohammad A. Karim
Appl. Opt. 29(5) 717-722 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.