OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 4 — Feb. 1, 2000
  • pp: 612–621

Comparative Analysis of Absorbance Calculations for Integrated Optical Waveguide Configurations by use of the Ray Optics Model and the Electromagnetic Wave Theory

Sergio B. Mendes and S. Scott Saavedra  »View Author Affiliations


Applied Optics, Vol. 39, Issue 4, pp. 612-621 (2000)
http://dx.doi.org/10.1364/AO.39.000612


View Full Text Article

Acrobat PDF (151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focusing on the use of planar waveguides as platforms for highly sensitive attenuated total reflection spectroscopy of organic thin films, we extend the ray optics model to provide absorbance expressions for the case of dichroic layers immobilized on the waveguide surface. Straightforward expressions are derived for the limiting case of weakly absorbing, anisotropically oriented molecules in the waveguide–cladding region. The second major focus is on the accuracy of the ray optics model. This model assumes that the introduction of absorbing species, either in the bulk cladding or as an adlayer on the waveguide surface, only causes a small perturbation to the original waveguide-mode profile. We investigate the accuracy of this assumption and the conditions under which it is valid. A comparison to an exact calculation by use of the electromagnetic wave theory is implemented, and the discrepancy of the ray optics model is determined for various waveguide configurations. We find that in typical situations in which waveguide-absorbance measurements are used to study organic thin films (<i>k</i><sub><i>l</i></sub>/<i>n</i><sub><i>l</i></sub> ≤ <sup>−1</sup>, <i>h</i>/λ ≈ <sup>−2</sup>) the discrepancy between the ray optics and the exact calculations is only a few percent (2–3%).

© 2000 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(240.0310) Optics at surfaces : Thin films
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6690) Optics at surfaces : Surface waves
(300.6490) Spectroscopy : Spectroscopy, surface

Citation
Sergio B. Mendes and S. Scott Saavedra, "Comparative Analysis of Absorbance Calculations for Integrated Optical Waveguide Configurations by use of the Ray Optics Model and the Electromagnetic Wave Theory," Appl. Opt. 39, 612-621 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-4-612


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, and H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
  2. M. Losche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
  3. A. Ulman, An Introduction to Ultrathin Organic Films (Academic, San Diego, 1991); A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, Mass., 1995).
  4. C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
  5. B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
  6. L. Kang and R. E. Dessey, “Slab waveguides in chemistry,” CRC Crit. Rev. Anal. Chem. 21, 377–388 (1990).
  7. T. E. Plowman, S. S. Saavedra, and W. M. Reichert, “Planar integrated optical methods for examining thin films and their surface adlayers,” Biomaterials 19, 341–355 (1998).
  8. P. W. Bohn, “Localized optical phenomena and the characterization of materials interfaces,” Ann. Rev. Mater. Sci. 27, 469–498 (1997).
  9. D. A. Stephens and P. W. Bohn, “Absorption spectrometry of bound monolayers on integrated optical structures,” Anal. Chem. 61, 386–390 (1989).
  10. S. S. Saavedra and W. M. Reichert, “In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry,” Langmuir 7, 995–999 (1991).
  11. D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein adsorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Colloid. Interface Sci. 157, 41–49 (1993).
  12. T. E. Plowman, M. D. Garrison, D. S. Walker, and W. M. Reichert, “Surface sensitivity of SiON integrated optical waveguides (IOWs) examined by IOW-attenuated total reflection spectrometry and IOW-Raman spectroscopy,” Thin Solid Films 243, 610–615 (1994).
  13. D. M. Cropek and P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
  14. L. Yang and S. S. Saavedra, “Chemical sensing using sol-gel derived planar waveguides and incicator phases,” Anal. Chem. 67, 1307–1314 (1995).
  15. P. L. Edmiston and S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Amer. Chem. Soc. 120, 1665–1671 (1998); P. L. Edmiston, J. E. Lee, S. S. Cheng, and S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Amer. Chem. Soc. 119, 560–570 (1997); P. L. Edmiston, J. E. Lee, L. L. Wood, and S. S. Saavedra, “Dipole orientation distributions in Langmuir–Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Amer. Chem. Soc. 100, 775–784 (1996).
  16. B. A. Bolton and J. R. Schere, “Raman-spectra and water-absorption of bovine serum-albumin,” J. Phys. Chem. 93, 7635–7640 (1989).
  17. W. M. Reichert, J. T. Ives, P. A. Suci, and J. D. Andrade, “Excitation of fluorescent emission from solutions at the surface of polymer thin-film wave-guides—an integrated-optics technique for the sensing of fluorescence at the polymer-solution interface,” Appl. Spectrosc. 41, 636–640 (1987).
  18. S. J. Choquette, L. Locasio-Brown, and R. A. Durst, “Planar wave-guide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
  19. K. Itoh and A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988); D. R. Dunphy, S. B. Mendes, S. S. Saavedra, and N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
  20. J. S. Kanger, C. Otto, M. Slotboom, and J. J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996).
  21. J. F. Rabolt, R. Santo, N. E. Schlotter, and J. D. Swalen, “Integrated-optics and Raman-scattering molecular orientation in thin polymer-films and Langmuir–Blodgett monolayers,” IBM J. Res. Dev. 26, 209–216 (1982); J. P. Rabe, J. D. Swalen, and J. F. Rabolt, “Order-disorder transitions in Langmuir–Blodgett films. 3. Polarized Raman studies of cadmium Arachidate using integrated optical techniques,” J. Chem. Phys. 86, 1601–1607 (1987).
  22. S. S. Saavedra and W. M. Reichert, “Integrated optical attenuated total reflection spectrometry of aqueous superstrates using prism-coupled polymer waveguides,” Anal. Chem. 62, 2251–2256 (1990).
  23. S. B. Mendes, L. Li, L. J. J. Burke, J. E. Lee, D. R. Dunphy, and S. S. Saavedra, “Broad-band attenuated total reflection spectroscopy of a hydrated protein film on a single mode planar waveguide,” Langmuir 12, 3374–3376 (1996).
  24. J. J. Burke, “Propagation constants of resonant waves on homogeneous, isotropic slab waveguides,” Appl. Opt. 9, 2444–2452 (1970).
  25. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974).
  26. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984).
  27. J. F. Offersgaard, “Waveguides formed by multiple layers of dielectric, semiconductor, or metallic media with optical loss and anisotropy,” J. Opt. Soc. Am. A 12, 2122–2128 (1995).
  28. A. J. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Tech. LT-5, 660–667 (1987).
  29. L. Li, “Determination of bound modes of multilayer for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 11, 984–991 (1994).
  30. G. L. Mitchell, “Absorption spectroscopy in scattering samples using integrated optics,” J. Quantum Electron. QE-13, 173–176 (1977).
  31. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  32. J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
  33. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972).
  34. J. N. Polky and J. H. Harris, “Absorption from thin-film waveguides,” J. Opt. Soc. Am. 62, 1081–1087 (1972).
  35. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12, 1015–1025 (1973).
  36. G. Stewart and B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
  37. J. E. Lee and S. S. Saavedra, “Molecular orientation in heme protein films adsorbed to hydrophilic and hydrophobic glass surfaces,” Langmuir 12, 4025–4032 (1996); J. E. Lee and S. S. Saavedra, “Molecular orientation in adsorbed cytochrome c films by planar waveguide linear dichroism,” in Proteins and Interfaces II: Fundamentals and Applications, T. A. Horbett and J. L. Brash, eds., ACS Symposium Series 602, 269–279 (1995).
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge, New York, 1992).
  39. Expressions for the Goos–Hänchen shift that appear in Ref. 22, which were taken from T. Hirshfeld, Appl. Spectrosc. 31, 243 (1977), are incorrect. The correct expressions are given, for instance, in Ref. 31.
  40. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  41. F. M. Mirabella, Jr. and N. J. Harrick, Internal Reflection Spectroscopy: Review and Supplement (Harrick Scientific Corporation, New York, 1985).
  42. H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986).
  43. F. Horowitz and S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
  44. F. A. Hopf and G. I. Stegeman, Applied Classical Electrodynamics, Vol. I: Linear Optics (Krieger, Malabar, Fla., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited