OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 671–682

Architectural approach to the role of optics in monoprocessor and multiprocessor machines

Jacques Henri Collet, Daniel Litaize, Jan Van Campenhout, Chris Jesshope, Marc Desmulliez, Hugo Thienpont, James Goodman, and Ahmed Louri  »View Author Affiliations

Applied Optics, Vol. 39, Issue 5, pp. 671-682 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relevance of introducing optical interconnects (OI’s) in monoprocessors and multiprocessors is studied from an architectural point of view. We show that perhaps the major explanation for why optical technologies have nearly been unable to penetrate into computers is that OI’s generally do not shorten the memory-access time, which is the most critical issue for today’s stored-program machines. In monoprocessors the memory-access time is dominated by the electronic latency of the memory itself. Thus implementing OI’s inside the memory hierarchy without changing the memory architecture cannot dramatically improve the global performance. In strongly coupled multiprocessors the node-bypass latency dominates. Therefore the higher the connectivity (possibly with optics), the shorter the path to another node, but the more expensive the network and the more complex the structure of electronic nodes. This relation leaves the choice of the best network open in terms of simplicity and latency reduction. The bottlenecks resulting from and the benefits of implementing OI’s are discussed with respect to symmetric multiprocessors, rings, and distributed shared-memory supercomputers.

© 2000 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: May 26, 1999
Revised Manuscript: September 8, 1999
Published: February 10, 2000

Jacques Henri Collet, Daniel Litaize, Jan Van Campenhout, Chris Jesshope, Marc Desmulliez, Hugo Thienpont, James Goodman, and Ahmed Louri, "Architectural approach to the role of optics in monoprocessor and multiprocessor machines," Appl. Opt. 39, 671-682 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Chavel, D. A. B. Miller, H. Thienpont, eds., Optics in Computing ’98, Proc. SPIE3490 (1998).
  2. IEEE Computer Society, Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnects, Montreal, Quebec, Canada, 22–24 June, (IEEE Computer Society, Los Alamitos, Calif., 1997).
  3. D. A. B. Miller, H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of system architecture, in the Special Issue on Parallel Computing with Optical Interconnects,” J. Parallel Distribut. Comput. 41, 42–52 (1997). [CrossRef]
  4. See the URL http://www.profibus.com .
  5. See the URL http://www.fieldbus.org .
  6. See the URL http://www.can-cia.de .
  7. See the URL http://www.interbus.com .
  8. S. Scott, “Synchronization and communication in the T3E multiprocessor,” in Proceedings of the Seventh International Conference on Architectural Support for Programming Languages and Operating Systems (Association for Computing Machinery, New York, 1996), pp. 26–36. [CrossRef]
  9. C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild, M. Tsao, “The SP-1 high performance switch,” in Proceedings of the Conference on Scalable High Performance Computing (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 150–157.
  10. See the URL http://www.ssd.intel.com .
  11. See the URL http://www.sgi.com/origin .
  12. For a complete document on HIPPI 6400, see the URL’s http://www.noc.lanl.gov/∼jamesh/hippi64 ; http://www.scizzl.com ; and http://www1.cem.ch/HSI/sci/sci.html .
  13. S. Scott, M. Vernon, J. R. Goodman, “Performance of the SCI ring,” in Proceedings of the Nineteenth International Symposium on Computer Architecture (Association for Computing Machinery, New York, 1992), pp. 403–414. [CrossRef]
  14. N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, W.-K. Su, “Myrinet: a gigabit-per-second local area network,” IEEE Micro. 15, 29–38 (1995). [CrossRef]
  15. See the URL http://www.sun.com/servers/midrange/e6500/e6500.spec.html .
  16. See the URL http://www.rambus.com/html/documentation.html .
  17. S. Tang, T. Li, F. Li, L. Wu, M. Dubinovski, R. Wickman, R. T. Chen, “A 1-GHz clock signal distribution for multiprocessor supercomputers,” in Proceedings of the International Conference on Massively Parallel Processing Using Optical Interconnects (MMPOI96) (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 186–191.
  18. R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovski, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y.-L. Liu, S. Rattan, C. Nodding, “Si CMOS process compatible guided-wave multi-Gbit/s optical clock signal distribution system for the Cray T-90 supercomputer,” in Proceedings of the International Conference on Massively Parallel Processing Using Optical Interconnects (MMPOI97) (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 10–24. [CrossRef]
  19. T. Szymanski, H. Scott, “Design of a terabit free-space photonic backplane for parallel computing,” in Proceedings of the Conference on Massively Parallel Processing Using Optical Interconnects (MMPOI95) (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 16–27.
  20. Y.-S. Liu, B. Robertson, G. C. Boisset, M. H. Ayliffe, R. Iyer, D. V. Plant, “Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator,” Appl. Opt. 37, 2895–2914 (1998). [CrossRef]
  21. G. Verschaffelt, R. Buczynski, P. Tuteleers, P. Vynck, V. Baukens, H. Ottevaere, C. Debaes, S. Kufner, M. Kufner, A. Hermanne, J. Genoe, D. Coppée, R. Vounckx, S. Borghs, I. Veretennicoff, H. Thienpont, “Demonstration of a monolithic multichannel module for multi-Gb/s intra-MCM optical interconnects,” Photon. Technol. Lett. 10, 1629–1631 (1998). [CrossRef]
  22. V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performance of optical multi-chip-module interconnects: comparing guided-wave and free-space pathways,” J. Eur. Opt. Soc. A 1, 255–261 (1999).
  23. J. C. Rodier, P. Chavel, A. Dupret, E. Belhaire, P. Garda, D. Prevost, P. Lalanne, “Video-rate simulated annealing for stochastic artificial retinas,” Opt. Commun. 132, 427–431 (1996). [CrossRef]
  24. J. Tanida, Y. Ichioka, “Programming of optical array logic: image data processing,” Appl. Opt. 27, 2926–2939 (1988). [CrossRef] [PubMed]
  25. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995). [CrossRef]
  26. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  27. G. Yayla, P. Marchand, S. Esener, “Energy and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, A. Ferreira, P. Berthome, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), Chap. 3.
  28. H. S. Hinton, An Introduction to Photonic Switching Fabrics (Plenum, New York, 1993). [CrossRef]
  29. O. Kibar, D. A. Van Blerkom, C. Fan, S. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–555 (1999). [CrossRef]
  30. J. L. Hennesy, D. A. Patterson, “Buses connecting I/O devices to the CPU/memory,” in Computer Architecture, a Quantitative Approach, 2nd ed. (Morgan Kauffmann, Los Altos, Calif., 1996), Sec. 6.3.
  31. A. Bolychevsky, C. R. Jesshope, V. B. Muchnick, “Dynamic scheduling in RISC architectures,” IEEE Proc. Comput. Digital Technol. 143, 309–317 (1996). [CrossRef]
  32. A. Iannucci, Multithreaded Computer Architecture—A Summary of the State of the Art (Kluwer Academic, Dordrecht, The Netherlands, 1994). [CrossRef]
  33. H. Neefs, P. Van Heuven, J. Van Campenhout, “Latency requirements of optical interconnects at different memory hierarchy levels of a computer system,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 552–555 (1998). [CrossRef]
  34. H. Davidson, Sun Microsystems, 901 San Antonio Road, Palo Alto, Calif. 94303 (private communication, 11March1999).
  35. J. H. Collet, L. Fesquet, “Comparison of the latency for an optical bus and several 2-D electronic topologies,” in CD-ROM of the Proceedings of the Eleventh International Parallel Processing Symposium (IPPS) (IEEE Computer Society, Los Alamitos, Calif., 1997), CD addresses X:workshpswocscollet.pdf ; X:workshpswocscollet.ps .
  36. K. H. Wang, Advanced Computer Architecture: Parallelism, Scalability, Programmability (McGraw-Hill, New York, 1993).
  37. A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel processing,” IEEE Trans. Parallel Distribut. Sys. 9, 497–512 (1998). [CrossRef]
  38. P. Sindhu, J. M. Frailong, J. Gastinel, M. Cekleov, L. Yuan, B. Gunning, D. Curry, “XDBus: a high-performance, consistent, packet-switched VLSI bus,” in Technical Digest of the Spring ’93 Computer Conferences (CompCon) (IEEE Computer Society, Los Alamitos, Calif., 1993), pp. 338–344. [CrossRef]
  39. A. Charlesworth, “Starfire: extending the SMP envelope,” IEEE Micro. 1, 39–49 (1998). [CrossRef]
  40. W. Hlayel, D. Litaize, L. Fesquet, J. H. Collet, “Optical versus electronic bus for address-transactions in future SMP architectures,” in Proceedings of the Conference on Parallel Architecture and Compilation Techniques (PACT) (IEEE Computer Society, Los Alamitos, Calif., 1998), pp. 22–29.
  41. Z. G. Vranesic, M. Stumm, D. M. Lewis, R. White, “Hector: a hierarchically structured shared-memory multiprocessor,” Computer 24, 72–79 (1991). [CrossRef]
  42. L. A. Barroso, M. Dubois, “The performance of cache coherent ring-based multiprocessors,” (Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, Calif., 1992).
  43. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Select. Top. Quantum Electron. 2, 55–76 (1996). [CrossRef]
  44. R. G. Rozier, F. E. Kiamilev, A. V. Krishnamoorthy, “Design and evaluation of a photonic FFT processor,” J. Parallel Distribut. Comput. 41, 131–136 (1997). [CrossRef]
  45. M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. M. Foulk, S. Ashcroft, P. Black, “Perfect-shuffle interconnected bitonic sorter: optoelectronic design,” Appl. Opt. 34, 5077–5090 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited