OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 733–745

Design, implementation, and characterization of a kinematically aligned, cascaded spot- array generator for a modulator-based free-space optical interconnect

Daniel F.- Brosseau, Frédéric Lacroix, Michael H. Ayliffe, Eric Bernier, Brian Robertson, Frank A. P. Tooley, David V. Plant, and Andrew G. Kirk  »View Author Affiliations


Applied Optics, Vol. 39, Issue 5, pp. 733-745 (2000)
http://dx.doi.org/10.1364/AO.39.000733


View Full Text Article

Enhanced HTML    Acrobat PDF (1849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and the implementation of a modular spot-array generator for a modulator-based free-space optical interconnect is presented. Two cascaded diffractive optical elements produce 4 × 8 clusters on a 1600 µm × 800 µm pitch, where each cluster is a 4 × 4 array of (1/e2) 13.1-µm-radius spots on a 90-µm pitch. The spot-array generator is kinematically aligned to the interconnect system such that no realignment is necessary between removal and reinsertion. Characterization results are presented.

© 2000 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

History
Original Manuscript: May 24, 1999
Revised Manuscript: October 25, 1999
Published: February 10, 2000

Citation
Daniel F.- Brosseau, Frédéric Lacroix, Michael H. Ayliffe, Eric Bernier, Brian Robertson, Frank A. P. Tooley, David V. Plant, and Andrew G. Kirk, "Design, implementation, and characterization of a kinematically aligned, cascaded spot- array generator for a modulator-based free-space optical interconnect," Appl. Opt. 39, 733-745 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-5-733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Select. Top. Quantum Electron. 2, 3–13 (1996). [CrossRef]
  2. O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–555 (1999). [CrossRef]
  3. C. Fan, D. A. Van Blerkom, W. L. Hendrick, S. C. Esener, “Free-space optical interconnection: a technology comparison of vertical-cavity surface-emitting lasers and multiple-quantum-well modulators,” Opt. Rev. Jpn. 3, 394–396 (1996). [CrossRef]
  4. A. L. Lentine, “Qualitative comparison of MQW modulator and VCSEL based OE-VLSI: a systems perspective,” in Proceedings of LEOS ’97: Tenth Annual Meeting (Lasers and Electro-Optics Society, Piscataway, N.J., 1997), Vol. 2, pp. 83–84.
  5. L. A. Coldren, E. Hegblom, E. Strzelecka, J. Ko, Y. Akulova, B. Thibeault, “Recent advances and important issues in vertical-cavity lasers,” in Vertical-Cavity Surface-Emitting Lasers, K. D. Choquette, D. G. Deppe, eds., Proc. SPIE3003, 2–13 (1997). [CrossRef]
  6. R. A. Morgan, “Vertical-cavity surface-emitting lasers: present and future,” in Vertical-Cavity Surface-Emitting Lasers, K. D. Choquette, D. G. Deppe, eds., Proc. SPIE3003, 14–26 (1997). [CrossRef]
  7. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibengath, S. P. Hui, G. J. Zydzik, K. W. Gossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11, 128–130 (1999). [CrossRef]
  8. A. V. Krishnamoorthy, K. W. Gossen, “Progress in optoelectronic-VLSI smart pixel technology based on GaAs/AlGaAs MQW modulators,” Int. J. Optoelectron. 11, 181–198 (1997).
  9. D. V. Plant, A. Z. Shang, M. R. Otazo, D. R. Rolston, B. Robertson, H. S. Hinton, “Design, modeling, and characterization of FET–SEED smart pixel transceiver arrays for optical backplanes,” IEEE J. Quantum Electron. 32, 1391–1398 (1996). [CrossRef]
  10. H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994). [CrossRef]
  11. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997). [CrossRef]
  12. B. Robertson, “Design of an optical interconnect for photonic backplane applications,” Appl. Opt. 37, 2974–2984 (1998). [CrossRef]
  13. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996). [CrossRef] [PubMed]
  14. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989). [CrossRef]
  15. H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  16. F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989). [CrossRef]
  17. J. Jahns, M. M. Down, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989). [CrossRef]
  18. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519–2525 (1993). [CrossRef] [PubMed]
  19. N. C. Craft, M. E. Prise, “Optical system tolerances for symmetric self-electro-optic-effect devices in optical computers,” in Optical Computing, Vol. 9 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 334–337.
  20. R. Iyer, Y. S. Liu, G. C. Boisset, D. J. Goodwill, M. H. Ayliffe, B. Robertson, W. M. Robertson, D. Kabal, F. Lacroix, D. V. Plant, “Design, implementation, and characterization of an optical power supply spot-array generator for a four-stage free-space optical backplane,” Appl. Opt. 36, 9230–9242 (1997). [CrossRef]
  21. F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and implementation of a four-stage clustered free-space optical interconnect,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998). [CrossRef]
  22. M. H. Ayliffe, D. Kabal, P. Khurana, F. Lacroix, A. G. Kirk, F. A. P. Tooley, D. V. Plant, “Electrical, thermal, and optomechanical packaging of large 2-D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A: Pure Appl. Opt. 1, 267–271 (1999). [CrossRef]
  23. B. Robertson, Y. Liu, G. C. Boisset, M. R. Taghizadeh, D. V. Plant, “In situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 36, 9253–9260 (1997). [CrossRef]
  24. A. G. Kirk, T. J. Hall, “Design of computer-generated holograms by simulated annealing: coding density and reconstruction error,” Opt. Commun. 94, 491–496 (1992). [CrossRef]
  25. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 3. [CrossRef]
  26. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 11.
  27. J. L. Brubaker, F. B. McCormick, F. A. P. Tooley, J. M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, M. J. Herron, “Optomechanics of a free-space photonic switch: the components,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 88–96 (1991). [CrossRef]
  28. F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J. M. Sasian, T. J. Cloonan, A. L. Lentine, R. L. Morrison, R. J. Crisci, S. L. Walker, S. J. Hinterlong, M. J. Herron, “Optomechanics of a free-space photonic switch: the system,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 97–114 (1991). [CrossRef]
  29. G. C. Boisset, M. H. Ayliffe, B. Robertson, R. Iyer, Y. S. Liu, D. V. Plant, D. J. Goodwill, D. Kabal, D. Pavlasek, “Optomechanics of a four-stage hybrid-self-electro-optic-device–based free-space optical backplane,” Appl. Opt. 36, 7341–7358 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited