OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 776–781

Nonlinear rotation-invariant pattern recognition by use of the optical morphological correlation

Pascuala Garcia-Martinez, Carlos Ferreira, Javier Garcia, and Henri H. Arsenault  »View Author Affiliations

Applied Optics, Vol. 39, Issue 5, pp. 776-781 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a modification of the nonlinear morphological correlation for optical rotation-invariant pattern recognition. The high selectivity of the morphological correlation is conserved compared with standard linear correlation. The operation performs the common morphological correlation by extraction of the information by means of a circular-harmonic component of a reference. In spite of some loss of information good discrimination is obtained, especially for detecting images with a high degree of resemblance. Computer simulations are presented, as well as optical experiments implemented with a joint transform correlator.

© 2000 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.4550) Image processing : Correlators

Original Manuscript: May 14, 1999
Revised Manuscript: August 16, 1999
Published: February 10, 2000

Pascuala Garcia-Martinez, Carlos Ferreira, Javier Garcia, and Henri H. Arsenault, "Nonlinear rotation-invariant pattern recognition by use of the optical morphological correlation," Appl. Opt. 39, 776-781 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), Chap. 8.
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  3. Y. N. Hsu, H. H. Arsenault, G. April, “Rotation-invariant digital pattern recognition using circular-harmonic expansion,” Appl. Opt. 21, 4012–4015 (1982). [CrossRef] [PubMed]
  4. Y. N. Hsu, H. H. Arsenault, “Optical pattern recognition using circular-harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  5. D. Casasent, D. Psaltis, “Scale-invariant optical transform,” Opt. Eng. 15, 258–261 (1976). [CrossRef]
  6. D. Mendlovic, N. Konforti, E. Marom, “Shift- and projection-invariant pattern recognition,” Appl. Opt. 28, 4784–4789 (1990). [CrossRef]
  7. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  8. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  9. P. Garcia-Martinez, D. Mas, J. Garcia, C. Ferreira, “Nonlinear morphological correlation: optoelectronic implementation,” Appl. Opt. 37, 2112–2118 (1998). [CrossRef]
  10. A. Shemer, D. Mendlovic, G. Shabtay, P. Garcia-Martinez, J. Garcia, “Modified morphological correlation based on bit-map representation,” Appl. Opt. 38, 781–787 (1999). [CrossRef]
  11. P. Maragos, R. W. Shafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE 78, 894–902 (1982).
  12. Y. Sheng, H. H. Arsenault, “Method of determining expansion centers and predicting circular-harmonic filters,” J. Opt. Soc. Am. A 4, 1793–1797 (1987). [CrossRef]
  13. G. Premont, Y. Sheng, “Fast design of circular-harmonic filters using simulated annealing,” Appl. Opt. 32, 3116–3121 (1993). [CrossRef] [PubMed]
  14. P. Garcia-Martinez, J. Garcia, C. Ferreira, “A new criterion for determining the expansion center for circular-harmonic filters,” Opt. Commun. 117, 399–405 (1995). [CrossRef]
  15. F. T. S. Yu, X. Li, E. Tam, S. Jutamulia, D. A. Gregory, “Rotation-invariant pattern recognition with a programmable joint transform correlator,” Appl. Opt. 28, 4725–4727 (1989). [CrossRef] [PubMed]
  16. D. Mendlovic, E. Marom, N. Konforti, “Complex-reference joint transform correlator,” Opt. Lett. 15, 1224–1226 (1990). [CrossRef] [PubMed]
  17. R. Pierstun, J. Rosen, J. Shamir, “Generation of continuous complex-valued functions of a joint transform correlator,” Appl. Opt. 33, 4398–4405 (1994). [CrossRef]
  18. H. H. Arsenault, C. Ferreira, M. P. Levesque, T. Szoplik, “Simpler filter with limited rotation invariance,” Appl. Opt. 25, 3230–3234 (1986). [CrossRef]
  19. Y. Yang, Y. N. Hsu, H. H. Arsenault, “Optimum circular symmetrical filters and their uses in pattern recognition,” Opt. Acta 29, 627–644 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited