OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 803–813

Optically computing the hit–miss transform for an automated cervical smear screening system

John L. Metz and Kristina M. Johnson  »View Author Affiliations


Applied Optics, Vol. 39, Issue 5, pp. 803-813 (2000)
http://dx.doi.org/10.1364/AO.39.000803


View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The hit–miss transform serves as a region-of-interest locator for cells from cervical smear images that show abnormal changes, which are indicative of malignancy, in their nuclei. An optical implementation of the hit–miss transform algorithm uses an analog spatial light modulator for gray-scale modulation at the filter plane of a 4f optical correlator. Gray-scale modulation at the filter plane improves correlator performance in comparison with a binary phase-only filter (BPOF) by reduction of the edge enhancement of kernels used in morphological detection of cancerous cervical cells. The hit–miss transform with a gray-scale amplitude and binary phase optical filter (GABPOF) for the hit filter and a BPOF for the miss filter shows a 47% reduction in total error versus the use of only BPOF filters to locate abnormal cells.

© 2000 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(070.4550) Fourier optics and signal processing : Correlators
(100.5010) Image processing : Pattern recognition
(200.4690) Optics in computing : Morphological transformations

History
Original Manuscript: June 17, 1999
Revised Manuscript: October 21, 1999
Published: February 10, 2000

Citation
John L. Metz and Kristina M. Johnson, "Optically computing the hit–miss transform for an automated cervical smear screening system," Appl. Opt. 39, 803-813 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-5-803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Wingo, L. A. G. Ries, H. M. Rosenberg, D. S. Miller, B. K. Edwards, “Cancer incidence and mortality, 1973–1995,” Cancer 82, 1197–1207 (1998). [CrossRef] [PubMed]
  2. L. G. Koss, “The Papanicolaou test for cervical cancer detection: a triumph and a tragedy,” JAMA 261, 737–743 (1989). [CrossRef] [PubMed]
  3. Y. V. Graaf, G. P. Vooijs, H. L. J. Gillard, D. M. D. S. Go, “Screening errors in cervical smear screening,” Acta Cytol. 31, 434–438 (1987). [PubMed]
  4. S. Bolden, P. A. Wingo, T. Tong, “Cancer statistics,” Cancer 45, 8–30 (1995).
  5. D. Grohs, “Challenges in cervical cancer screening: what clinicians, patients and the general public need to know,” Acta Cytol. 40, 133–137 (1996). [CrossRef] [PubMed]
  6. B. L. Wells, J. W. Horm, “Targeting the underserved for breast and cervical cancer screening: the utility of ecological analysis using the National Health Interview Survey,” Am. J. Public Health 88, 1484–2489 (1998). [CrossRef] [PubMed]
  7. G. L. Wied, G. F. Bahr, M. Bibbo, J. H. Puls, J. Taylor, P. H. Bartels, “The TICAS-RTCIP real time cell identification processor,” Acta Cytol. 19, 286–288 (1975). [PubMed]
  8. Editorial Office of Analytical and Quantitative Cytology and Histology and The International Academy of Cytology Committee on Quantitative Morphology, “Data on automated cytology systems as submitted by their developers,” Anal. Quant. Cytol. Histol. 13, 300–306 (1991).
  9. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  10. D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984). [CrossRef]
  11. R. M. Turner, D. A. Jared, G. D. Sharp, K. M. Johnson, “Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators,” Appl. Opt. 32, 3094–3101 (1993). [CrossRef] [PubMed]
  12. D. Casasent, R. Schaefer, R. Sturgill, “Optical hit–miss morphological transform,” Appl. Opt. 31, 6255–6263 (1992). [CrossRef] [PubMed]
  13. H. Jing, L. Liu, C. Wang, C. Zhou, “Logic-operated mathematical morphology and its optical implementation,” Appl. Opt. 38, 5605–5612 (1999). [CrossRef]
  14. R. Narayanswamy, R. M. Turner, D. J. McKnight, J. P. Sharpe, K. M. Johnson, “Optoelectronic hit–miss transform for screening cervical smear slides,” Opt. Lett. 20, 1362–1364 (1995). [CrossRef] [PubMed]
  15. R. Narayanswamy, K. M. Johnson, “Optoelectronic region of interest detection: an application in automated cytology,” Appl. Opt. 37, 6011–6025 (1998). [CrossRef]
  16. M. W. Farn, J. W. Goodman, “Optimal binary phase-only filters,” Appl. Opt. 27, 4431–4437 (1988). [CrossRef] [PubMed]
  17. S. A. Serati, G. D. Sharp, R. A. Serati, “128 × 128 analog liquid crystal spatial light modulator,” in Optical Pattern Recognition VI, D. P. Casasent, T. Chao, eds., Proc. SPIE2490, 378–387 (1995). [CrossRef]
  18. D. J. McKnight, K. M. Johnson, M. A. Follett, “Analog distorted helix ferroelectric liquid-crystal-on-silicon spatial light modulator,” Opt. Lett. 20, 513–515 (1995). [CrossRef] [PubMed]
  19. K. A. Bauchert, S. A. Serati, G. D. Sharp, D. J. McKnight, “Complex phase/amplitude spatial light modulator advances and use in a multispectral optical correlator,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 170–177 (1997). [CrossRef]
  20. Boulder Nonlinear Systems, Inc., 450 Courtney Way, #107, Lafayette, Co. 80026, USA.
  21. D. J. Zahniser, K. L. Wong, J. F. Brenner, H. G. Ball, G. L. Garcia, M. L. Hutchinson, “Contextual analysis and intermediate cell markers enhance high-resolution cell image analysis for automated cervical smear diagnosis,” Cytometry 12, 10–14 (1991). [CrossRef] [PubMed]
  22. O. A. N. Husain, J. H. Tucker, B. A. P. Roberts, “Automation in cervical cancer screening—part 1: fixed cell scanning systems,” Biomed. Eng. 11, 161–166 (1976). [PubMed]
  23. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, New York, 1992).
  24. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  25. Dalsa, Inc., 605 McMurray Road, Waterloo, Ontario N2V 2E9, Canada.
  26. National Instruments, 6504 Bridge Point Parkway, Austin, Tex. 78730-5039.
  27. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid-crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989). [CrossRef] [PubMed]
  28. Dipix Technologies Inc., 1051 Baxter Road, Ottawa, Ontario K2C 3P1, Canada.
  29. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  30. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge U. Press, Cambridge, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited