OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 5 — Feb. 10, 2000
  • pp: 818–826

Equivalency-processing parallel photonic integrated circuit (EP3IC): equivalence search module based on multiwavelength guided-wave technology

Abram Detofsky, Peng Yin Choo, and Ahmed Louri  »View Author Affiliations


Applied Optics, Vol. 39, Issue 5, pp. 818-826 (2000)
http://dx.doi.org/10.1364/AO.39.000818


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optoelectronic module called the equivalency-processing parallel photonic integrated circuit (EP3IC) that is created specifically to implement high-speed parallel equivalence searches (i.e., database word searches). The module combines a parallel-computation model with multiwavelength photonic integrated-circuit technology to achieve high-speed data processing. On the basis of simulation and initial analytical computation, a single-step multicomparand word-parallel bit-parallel equality search can attain an aggregate processing speed of 82 Tbit/s. We outline the theoretical design of the monolithic module and the integrated components and compare this with a functionally identical bulk-optics implementation. This integrated-circuit solution provides relatively low-power operation, fast switching speed, a compact system footprint, vibration tolerance, and ease of manufacturing.

© 2000 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(200.4540) Optics in computing : Optical content addressable memory processors
(200.4560) Optics in computing : Optical data processing
(200.4740) Optics in computing : Optical processing
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits

History
Revised Manuscript: August 6, 1999
Published: February 10, 2000

Citation
Abram Detofsky, Peng Yin Choo, and Ahmed Louri, "Equivalency-processing parallel photonic integrated circuit (EP3IC): equivalence search module based on multiwavelength guided-wave technology," Appl. Opt. 39, 818-826 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-5-818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Giboney, L. B. Aronson, B. E. Lemoff, “The ideal light source for datanets,” IEEE Spectrum 35, 43–53 (1998). [CrossRef]
  2. T. Szymanski, H. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996). [CrossRef] [PubMed]
  3. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 232–295.
  4. A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992). [CrossRef] [PubMed]
  5. P. A. Mitkas, L. J. Irakliotis, F. R. Beyette, S. A. Feld, C. W. Wilmsen, “Optoelectronic data filter for selection and projection,” Appl. Opt. 33, 1345–1353 (1994). [CrossRef] [PubMed]
  6. S. Akyokus, P. B. Berra, “A 3-D optical database machine,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 543–551. [CrossRef]
  7. A. Louri, J. Hatch, “Optical content-addressable parallel processor for high-speed database processing,” Appl. Opt. 33, 8153–8164 (1994). [CrossRef] [PubMed]
  8. A. Louri, J. Hatch, “An optical content-addressable parallel processor for high-speed database processing: theoretical concepts and experimental results, Special Issue on Associative Processors,” IEEE Comput. 27(11), 65–72 (1994).
  9. P. S. Guilfoyle, R. V. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. A. Neff, ed., Proc. SPIE1563, 214–222 (1991). [CrossRef]
  10. P. Y. Choo, A. Detofsky, A. Louri, “A multi-wavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts and preliminary experimental system,” in Parallel and Distributed Processing, J. Relim, ed., Lecture Notes in Computer Science, Vol. 1586 (Springer-Verlag, Heidelberg, 1999), pp. 873–886. [CrossRef]
  11. P. Y. Choo, A. Detofsky, A. Louri, “A multiwavelength optical content-addressable parallel processor (MW-OCAPP) for high-speed parallel relational database processing: architectural concepts,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 66–69.
  12. P. Y. Choo, A. Detofsky, A. Louri, “An optical, architecture based on multiwavelength and polarization for parallel and high-speed relational database processing,” Optics in Computing ‘98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 139–143 (1998). [CrossRef]
  13. P. Y. Choo, A. Detofsky, A. Louri, “Multiwavelength optical content-addressable parallel processor for high-speed parallel relational database processing,” Appl. Opt 38, 5594–5604 (1999). [CrossRef]
  14. A. Detofsky, P. Y. Choo, A. Louri, “Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing,” Opt. Lett. 23, 1372–1374 (1998). [CrossRef]
  15. L. Coldren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  16. S. Chandrasekhar, “The progress and performance of long wavelength OEIC photoreceivers incorporating heterojunction bipolar transistors,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 45–65. [CrossRef]
  17. U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 129–131 (1995). [CrossRef]
  18. C. E. Zah, J. Gamelin, B. Pathak, F. Favire, P. Lin, N. Andreadakis, R. Bhat, C. Caneau, L. Curtis, D. Mahoney, W. Young, T. Lee, “Multiwavelength light source with integrated DFB laser array and star coupler for WDM lightwave communications,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 91–109. [CrossRef]
  19. J. B. D. Soole, H. LeBlanc, N. Andreadakis, R. Bhat, C. Caneau, M. Koza, “Monolithic InP reflection-grating multiplexer/demultiplexers for WDM components operating in the long wavelength fiber band,” in Current Trends in Integrated Electronics, T. P. Lee, ed. (World Scientific, Singapore, 1994), pp. 111–133. [CrossRef]
  20. R. Kaiser, D. Trommer, H. Heidrich, F. Fidorra, M. Hamacher, “Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications,” Opt. Quantum Electron. 28, 565–573 (1996). [CrossRef]
  21. Prometheus Users Manual, Version 3.1 (BBV Software, Enschede, The Netherlands, 1999).
  22. ASAP Advanced Tutorial, Version 6.5 (Breault Research Organization, Tucson, Ariz., 1999).
  23. S. Akiba, M. Usami, K. Utaka, “1.5-µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol. LT-5, 1564–1573 (1987). [CrossRef]
  24. H. Bissessur, F. Gaborit, B. Martin, G. Ripoche, “Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance,” Electron. Lett. 31, 1372–1373 (1995). [CrossRef]
  25. W.-Y. Hwang, “TE–TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron. 32, 1054–1062 (1996). [CrossRef]
  26. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. Twieg, J. Swalen, G. Bjorklund, C. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990). [CrossRef]
  27. M. Quillec, Materials for Optoelectronics (Kluwer, New York, 1996). [CrossRef]
  28. M. J. Bloemer, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619–1621 (1992). [CrossRef]
  29. M. Izutsu, Y. Nakai, T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7, 136–138 (1982). [CrossRef] [PubMed]
  30. J. B. D. Soole, A. Scherer, H. Leblanc, N. Andreadakis, R. Bhat, M. Koza, “Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 µm,” Electron. Lett. 27, 132–134 (1991). [CrossRef]
  31. R. J. Deri, R. Hawkins, C. Caneau, E. Pennings, N. Andreadakis, “Ultracompact monolithic integration of polarization diversity waveguide/photodiodes,” Appl. Phys. Lett. 59, 1823–1825 (1991). [CrossRef]
  32. R. J. Deri, “Impedance matching for enhanced waveguide/photodetector integration,” Appl. Phys. Lett. 55, 2712–2714 (1989). [CrossRef]
  33. European Commission, “Optoelectronic interconnects for integrated circuits,” in Technology Roadmap [Microelectronics Advanced Research Initiative, European Strategic Program on Research in Information Technology (ESPRIT), June1998].
  34. B. P. Keyworth, D. Corazza, J. McMullin, “Low-cost pigtailing of vertical cavity surface emitting laser arrays,” in Applications of Photonic Technology 2, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 361–366. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited