Localized Approximation for Gaussian Beams in Elliptical Cylinder Coordinates
Applied Optics, Vol. 39, Issue 6, pp. 1008-1025 (2000)
http://dx.doi.org/10.1364/AO.39.001008
Acrobat PDF (249 KB)
Abstract
We establish a localized approximation to evaluate the beam-shape coefficients of a Gaussian beam in elliptical cylinder coordinates. As for the case of spherical coordinates and of circular cylinder coordinates, this approximation provides an efficient way to speed up computations within the framework of a generalized Lorenz–Mie theory for elliptical cylinders.
© 2000 Optical Society of America
OCIS Codes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
Citation
Gérard Gouesbet, Loic Mees, Gérard Gréhan, and Kuan-Fang Ren, "Localized Approximation for Gaussian Beams in Elliptical Cylinder Coordinates," Appl. Opt. 39, 1008-1025 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-1008
Sort: Year | Journal | Reset
References
- G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
- G. Gouesbet, G. Gréhan, and B. Maheu, “Generalized Lorenz–Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, Washington, D.C., 1991), Chap. 10, pp. 339–384.
- F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
- G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).
- G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT—framework, formulation, and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
- H. Mignon, G. Gréhan, G. Gouesbet, T. H. Xu, and C. Tropea, “Measurement of cylindrical particles with phase Doppler anemometry,” Appl. Opt. 25, 5180–5190 (1996).
- J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt. 35, 2259–2266 (1996).
- X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998).
- E. Lenglart and G. Gouesbet, “The separability theorem in terms of distributions with discussion of electromagnetic scattering theory,” J. Math. Phys. 37, 4705–4710 (1996).
- G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave description of shaped beams in elliptical cylinder coordinates,” J. Opt. Soc. Am. A 15, 3028–3038 (1998).
- G. Gouesbet, L. Mees, and G. Gréhan, “Partial wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates,” J. Opt. A 1, 121–132 (1999).
- G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).
- H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
- B. Maheu, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory: first exact values and comparisons with the localized approximation,” Appl. Opt. 26, 23–26 (1987).
- B. Maheu, G. Gréhan, and G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).
- G. Gouesbet, G. Gréhan, and B. Maheu, “On the generalized Lorenz–Mie theory: first attempt to design a localized approximation to the computation of the coefficients g_{n}^{m},” J. Opt. (Paris) 20, 31–43 (1989).
- G. Gouesbet, G. Gréhan, and B. Maheu, “A localized interpretation to compute all the coefficients g_{n}^{m} in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).
- G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
- J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).
- J. A. Lock and G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
- G. Gouesbet and J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).
- G. Gouesbet, G. Gréhan, and K. F. Ren, “Rigorous justification of the cylindrical localized approximation to speed up computations in GLMT for cylinders,” J. Opt. Soc. Am. A 15, 511–523 (1998).
- G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorentz–Mie theory for cylinders with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999).
- J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder. I. Parameterization of the incident beam and the far-zone scattered intensity,” J. Opt. Soc. Am. A 14, 640–652 (1997).
- C. Yeh, “The diffraction of waves by a penetrable ribbon,” J. Math. Phys. 4, 65–71 (1963).
- C. Yeh, “Backscattering cross section of a dielectric elliptical cylinder,” J. Opt. Soc. Am. 55, 309–314 (1965).
- P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
- T. J. Bromwich, “Electromagnetic waves,” Philos. Mag. 38, 143–164 (1919).
- F. E. Borgnis, “Elektromagnetische Eigenschwingungen dielektrischer Raüme,” Ann. Phys. 35, 359–384 (1939).
- P. Poincelot, Précis d’Electromagnétisme Théorique (Masson, Paris, 1965).
- G. Gouesbet, G. Gréhan, B. Maheu, and K. F. Ren, Electromagnetic Scattering of Shaped Beams (Generalized Lorenz–Mie Theory, textbook manuscript in preparation; available from the authors on request.
- R. Campbell, Théorie Générale de l’Équation de Mathieu (Masson, Paris, 1955).
- N. W. McLachlan, Theory and Application of Mathieu Functions (Clarendon, Oxford, 1951).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 20, pp. 723–745.
- G. Gouesbet, “Theory of distributions and its application to beam parameterization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).
- G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999).
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
- J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
- G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. 27, 35–50 (1996).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.