OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 1042–1048

Investigation of two-photon-induced polarization spectroscopy of the a–X (1,0) transition in molecular nitrogen at elevated pressures

Clemens F. Kaminski and Thomas Dreier  »View Author Affiliations

Applied Optics, Vol. 39, Issue 6, pp. 1042-1048 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-photon-induced polarization spectroscopy of molecular nitrogen in the a1Π g (ν′ = 1) ← X1Σg+ (ν″ = 0) system near 283 nm was performed, and its signal dependence investigated over the pressure range from 1.2 to 5 bars at 300 K. A significant increase of the signal intensity with pressure beyond the expected square law for a two-photon process was observed for pure nitrogen. Similar behavior was also found for a constant nitrogen partial pressure with increasing partial pressures of argon buffer gas. In both cases the spectral linewidth of the excited transitions increased dramatically with overall pressure. A possible explanation is given for the observed behavior in terms of contributions to the nonlinear susceptibility of the medium from the population of one-photon resonantly absorbing excited-state nitrogen and ground state N2+ ions created in the multiphoton absorption process at the high laser intensities required.

© 2000 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5440) Optical devices : Polarization-selective devices
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Original Manuscript: June 21, 1999
Revised Manuscript: November 18, 1999
Published: February 20, 2000

Clemens F. Kaminski and Thomas Dreier, "Investigation of two-photon-induced polarization spectroscopy of the a–X (1,0) transition in molecular nitrogen at elevated pressures," Appl. Opt. 39, 1042-1048 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
  2. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweener, N. M. Laurendeau, “Two-photon excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365–367 (1983). [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, “Flame studies of atomic hydrogen and oxygen using resonant multiphoton optogalvanic spectroscopy,” in Proceedings of the 20th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1331–1337.
  4. U. Westblom, S. Agrup, M. Aldén, P. Cederbalk, “Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects,” Appl. Opt. 30, 2990–3002 (1991). [CrossRef] [PubMed]
  5. U. Westblom, M. Aldén, “Laser-induced fluorescence detection of NH3 with the use of two-photon excitation,” Appl. Spectrosc. 44, 881–886 (1990). [CrossRef]
  6. J. J. Tiee, C. R. Quick, G. W. Loge, F. B. Wampler, “2 photon pumped CO B-A laser,” J. Appl. Phys. 63, 288–290 (1988). [CrossRef]
  7. K. C. Smyth, P. J. H. Tjossem, “Signal detection efficiency in multiphoton ionization flame measurements,” Appl. Opt. 29, 4891–4898 (1990). [CrossRef] [PubMed]
  8. M. Aldén, H. Edner, S. Wallin, “Simultaneous spatially resolved NO and NO2 measurements using one- and two-photon laser-induced fluorescence,” Opt. Lett. 10, 529–531 (1985). [CrossRef]
  9. T. Ebata, A. Fujii, M. Ito, “Two-color double resonant multiphoton ionization of N2 and the LIF detection of N2+ ion produced by multiphoton ionization,” J. Phys. Chem. 91, 3125–3128 (1987). [CrossRef]
  10. C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon resonant detection of N2 using polarization spectroscopy and laser induced fluorescence,” in Laser Applications to Chemical, Biological, and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 158–160.
  11. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1991).
  12. R. E. Teets, F. W. Kowalski, W. T. Hill, N. Charlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977). [CrossRef]
  13. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976). [CrossRef]
  14. W. E. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983). [CrossRef]
  15. K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993). [CrossRef] [PubMed]
  16. B. Löfstedt, R. Fritzon, M. Aldén, “Investigation of NO detection in flames by use of polarization spectroscopy,” Appl. Opt. 35, 2140–2146 (1996). [CrossRef] [PubMed]
  17. K. Nyholm, “Measurements of OH rotational temperatures in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994). [CrossRef]
  18. K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993). [CrossRef] [PubMed]
  19. T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998). [CrossRef]
  20. K. Danzmann, K. Grützmacher, B. Wende, “Doppler-free two-photon polarization-spectroscopic measurement of the Stark-broadened profile of the hydrogen Lα line in a dense plasma,” Phys. Rev. Lett. 57, 2151–2153 (1986). [CrossRef] [PubMed]
  21. J. Seidel, “Theory of two-photon polarization spectroscopy of plasma-broadened hydrogen Lα line,” Phys. Rev. Lett. 57, 2154–2156 (1986). [CrossRef] [PubMed]
  22. A. Lofthus, P. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977). [CrossRef]
  23. N. van Veen, P. Brewer, P. Das, R. Bersohn, “Detection of the 1Πg(ν′ = 0,1) ← X1Πg(ν″ = 0) transition in N2by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982). [CrossRef]
  24. C. F. Kaminski, B. Löfstedt, Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser-induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
  25. G. N. Robertson, K. Kohse-Höhinghaus, S. Le Boiteux, F. Aguerre, B. Attal-Trétout, “Observation of strong field effects and rotational line coupling in DFWM processes resonant with 2Σ–2Π electronic system,” J. Quant. Spectrosc. Radiat. Transfer 55, 71–101 (1996). [CrossRef]
  26. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, Mass., 1988).
  27. L. A. Rahn, L. J. Zych, P. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979). [CrossRef]
  28. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  29. D. R. Crosley, G. P. Smith, “Two-photon spectroscopy of the A2Σ+–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773 (1983). [CrossRef]
  30. P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989). [CrossRef]
  31. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Heidelberg, 1979). [CrossRef]
  32. S. M. Gladkov, N. I. Koroteev, M. V. Rychev, O. Shtentsel, “Nature of the anomalously strong cubic optical nonlinearity of a gaseous plasma,” JETP Lett. 43, 287–291 (1986).
  33. Y. Prior, A. R. Bogdan, M. Dagenais, N. Bloembergen, “Pressure-induced extra resonances in four-wave mixing,” Phys. Rev. Lett. 46, 111–114 (1981). [CrossRef]
  34. W. R. Garret, Y. Zhu, “Coherent control of multiphoton driven processes: a laser-induced catalyst,” J. Chem. Phys. 106, 2045–2048 (1997). [CrossRef]
  35. W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited