OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 1053–1058

Application of In Situ Ellipsometry in the Fabrication of Thin-Film Optical Coatings on Semiconductors

Marcel G. Boudreau, Steven G. Wallace, Ginutis Balcaitis, Sangeeta Murugkar, Harold K. Haugen, and Peter Mascher  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 1053-1058 (2000)
http://dx.doi.org/10.1364/AO.39.001053


View Full Text Article

Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin-film interference filters, suitable for use on GaAs- and InP-based lasers, have been fabricated by use of the electron–cyclotron resonance plasma-enhanced chemical vapor deposition technique. Multilayer film structures composed of silicon oxynitride material have been deposited at low temperatures with an in situ rotating compensator ellipsometer for monitoring the index of refraction and thickness of the deposited layers. Individual layers with an index of refraction from 3.3 to 1.46 at 633 nm have been produced with a run-to-run reproducibility of 0.005 and a thickness control of 10 Å. Several filter designs have been implemented, including high-reflection filters, one- and two-layer anitreflection filters, and narrow-band high-reflection filters. It is shown that an accurate measurement of the filter optical properties during deposition is possible and that controlled reflectance spectra can be obtained.

© 2000 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(140.2020) Lasers and laser optics : Diode lasers
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.3840) Thin films : Materials and process characterization

Citation
Marcel G. Boudreau, Steven G. Wallace, Ginutis Balcaitis, Sangeeta Murugkar, Harold K. Haugen, and Peter Mascher, "Application of In Situ Ellipsometry in the Fabrication of Thin-Film Optical Coatings on Semiconductors," Appl. Opt. 39, 1053-1058 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-1053


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Kaukawa, N. Iwai, and N. Yamanaka, “Very high characteristic temperature and constant differential quantum efficiency 1.3 μm GaInAsP/InP strained-layer quantum well lasers by use of temperature dependent reflectivity (TDR) mirror,” Electron. Lett. 30, 1064–1065 (1994).
  2. M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayer,” Electron. Lett. 30, 1147–1149 (1994).
  3. D. M. Braun and R. L. Jungerman, “Broadband multilayer antireflection coating for semiconductor laser facets,” Opt. Lett. 20, 1154–1156 (1995).
  4. M. Boudreau, M. Boumerzoug, P. Mascher, and P. E. Jessop, “Electron cyclotron resonance chemical vapor deposition of silicon oxynitrides using tris(dimethylamino)silane,” Appl. Phys. Lett. 63, 3014–3016 (1993).
  5. D. L. Smith, “Controlling the plasma chemistry of silicon nitride and oxide deposition from silane,” J. Vac. Sci. Technol. A 11, 1843–1850 (1993).
  6. P. Mascher, M. G. Boudreau, S. G. Wallace, J. R. Roscoe, S. Murugkar, G. Balcaitis, C. Wettlaufer, and H. K. Haugen, “Optical coatings for improved semiconductor diode laser performance,” Electrochem. Soc. Proc. V98–2, 56–67 (1998).
  7. P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
  8. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Amsterdam, 1988), pp. 270–275.
  9. I. Wu, J. B. Dottellis, and M. Dagenais, “Real-time in-situ ellipsometric control of antireflection coatings for semiconductor laser amplifiers using SiOx,” J. Vac. Sci. Technol. A 11, 2398–2406 (1993).
  10. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
  11. C. Vassallo, “Rigorous and approximate calculations of antireflection layer parameters for travelling-wave diode laser amplifiers,” Electron. Lett. 21, 333–334 (1985).
  12. D. J. Gallant, M. L. Tilton, D. J. Bossert, J. D. Barrie, and G. C. Dente, “Optimized single-layer antireflection coatings for semiconductor lasers,” IEEE Photonics Technol. Lett. 9, 300–302 (1997).
  13. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “New formula for semiconductor laser facet reflectivity,” IEEE Photonics Technol. Lett. 5, 148–150 (1993).
  14. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
  15. D. T. Cassidy, “Technique for measurement of the gain spectra of semiconductor diode lasers,” J. Appl. Phys. 56, 3096–3099 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited