OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 873–886

Measurement of low-altitude infrared propagation

Carl R. Zeisse, Brett D. Nener, and Randle V. Dewees  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 873-886 (2000)
http://dx.doi.org/10.1364/AO.39.000873


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared propagation at low altitudes is determined by extinction that is due to molecules and aerosol particles and ray bending by refraction, three effects that control the mean value of the signal. Interference causes the signal to fluctuate, or scintillate, about the mean value. We discuss the design, calibration, and limitations of a field instrument for measuring optical propagation inside the midwave and long-wave infrared atmospheric windows. The instrument, which is accurate to ±10%, has been used to investigate aerosol, refractive, and scintillation phenomena in the marine boundary layer.

© 2000 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(290.1090) Scattering : Aerosol and cloud effects

History
Original Manuscript: June 18, 1999
Revised Manuscript: October 15, 1999
Published: February 20, 2000

Citation
Carl R. Zeisse, Brett D. Nener, and Randle V. Dewees, "Measurement of low-altitude infrared propagation," Appl. Opt. 39, 873-886 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-873


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Raz, A. D. Devir, A. Ben-Shalom, U. P. Oppenheim, S. G. Lipson, “Measurement of the integrated water vapor content in the atmosphere by a radiometric method,” Appl. Opt. 26, 2436–2440 (1987). [CrossRef] [PubMed]
  2. A. Berk, L. S. Bernstein, D. C. Robertson, “Modtran: a moderate resolution model for lowtran 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  3. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  4. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughn, eds. (McGraw-Hill, New York, 1978), Section 14, pp. 14-13–14-22.
  5. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  6. S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983). [CrossRef]
  7. R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations,” J. Opt. Soc. Am. 70, 1192–1205 (1980). [CrossRef]
  8. E. L. Andreas, “Estimating Cn2 over snow and sea ice from meteorological data,” J. Opt. Soc. Am. A 5, 481–495 (1988). [CrossRef]
  9. R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970). [CrossRef]
  10. W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979). [CrossRef]
  11. J. E. Freehafer, W. T. Fishback, W. H. Furry, D. E. Kerr, “Theory of propagation in a horizontally stratified atmosphere,” in Propagation of Short Radio Waves, D. E. Kerr, ed. (McGraw-Hill, New York, 1951), p. 35.
  12. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), Chap. 6.
  13. R. J. Hill, G. R. Ochs, “Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale turbulence,” Appl. Opt. 17, 3608–3612 (1978). [CrossRef] [PubMed]
  14. J. H. Churnside, R. L. Lataitis, J. J. Wilson, “Two-color correlation of atmospheric scintillation,” Appl. Opt. 31, 4285–4290 (1992). [CrossRef] [PubMed]
  15. S. F. Clifford, “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence,” J. Opt. Soc. Am. 61, 1285–1292 (1971). [CrossRef]
  16. Model SR-20, manufactured by CI Systems, Incorporated, 5137 Clareton Drive, Suite 220, Agoura Hills, Calif. 91301.
  17. Model DR-150 VHF FM Transceiver, Alinco Electronics Incorporated, 438 Amapola Avenue, Suite 130, Torrance, Calif. 90501-6201.
  18. EG&G Judson Optoelectronics, 221 Commerce Drive, Montgomeryville, Pa. 18936.
  19. A. T. Friberg, “On the generalized radiance associated with radiation from a quasihomogeneous planar source,” Opt. Acta 28, 261–277 (1981). [CrossRef]
  20. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am. 68, 7–17 (1978). [CrossRef]
  21. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969), p. 323 ff. The blade factor, determined by the relative sizes of the blackbody aperture and the chopper blade, is the ratio of the rms value of the first harmonic of the signal to its peak-to-peak value.
  22. T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968). [CrossRef]
  23. A. Deepak, M. A. Box, “Forwardscattering corrections for optical extinction measurements in aerosol media. 1: Monodispersions,” Appl. Opt. 17, 2900–2908 (1978). [CrossRef] [PubMed]
  24. B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, A. Ismaelli, “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 14, 1329–1337 (1997). [CrossRef]
  25. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code LOWTRAN 6,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983). The phase functions tabulated in this paper are normalized such that their integral over all solid angles is one.
  26. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), p. 86 ff.
  27. The wait time is the time required for the lock-in to reach 99% of a step change at its input.
  28. C. R. Zeisse, S. G. Gathman, A. E. Barrios, W. K. Moision, K. L. Davidson, P. A. Frederickson, B. D. Nener, “Low altitude infrared transmission,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 589–599.
  29. P. A. Frederickson, K. L. Davidson, C. R. Zeisse, C. S. Bendall, “Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods,” in Proceedings of the 1997 Battlespace Atmospherics Conference, 2–4 December 1997, K. D. Anderson, J. H. Richter, eds., (Space and Naval Warfare Systems Center, San Diego, Calif., 1988), pp. 571–578.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited