OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 897–912

Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters

Kevin George Ruddick, Fabrice Ovidio, and Machteld Rijkeboer  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 897-912 (2000)
http://dx.doi.org/10.1364/AO.39.000897


View Full Text Article

Acrobat PDF (1259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with <i>in situ</i> radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.

© 2000 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

Citation
Kevin George Ruddick, Fabrice Ovidio, and Machteld Rijkeboer, "Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters," Appl. Opt. 39, 897-912 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-897


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
  2. S. Sugihara, M. Kishino, and N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn 41, 399–406 (1985).
  3. A. P. Vasilkov, “A retrieval of coastal water constituent concentrations by least-square inversion of a radiance model,” in 4th International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. II, pp. 107–116.
  4. Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
  5. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
  6. A. G. Dekker, H. J. Hoogenboom, L. M. Goddijn, and T. J. M. Malthus, “The relation between inherent optical properties and reflectance spectra in turbid inland waters,” Remote Sens. Rev. 15, 59–74 (1997).
  7. S. Sathyendranath, L. Prieur, and A. Morel, “An evaluation of the problems of chlorophyll retrieval from ocean colour, for case 2 waters,” Adv. Space Res. 7, 27–30 (1987).
  8. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
  9. M. Viollier, D. Tanré, and P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980).
  10. B. Sturm, “The atmospheric correction of remotely sensed data and the quantitative determination of suspended matter in marine water surface layers,” in Remote Sensing in Meteorology, Oceanography and Hydrology, A. P. Cracknell, ed. (Ellis Horwood, Chichester, UK, 1980), pp. 163–197.
  11. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978).
  12. H. R. Gordon and D. J. Castano, “Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26, 2111–2122 (1987).
  13. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
  14. M. Viollier and B. Sturm, “CZCS data analysis in turbid coastal waters,” J. Geophys. Res. 89, 4977–4985 (1984).
  15. R. C. Smith and W. H. Wilson, “Ship and satellite bio-optical research in the California Bight,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 281–294.
  16. R. W. Austin and T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner (CZCS),” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–255.
  17. J. L. Mueller, “Effects of water reflectance at 670 nm on Coastal Zone Color Scanner (CZCS) aerosol radiance estimates off the coast of central California,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE 489, 179–186 (1984).
  18. R. W. Gould and R. A. Arnone, “Extending Coastal Zone Color Scanner estimates of the diffuse attenuation coefficient into Case II waters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 342–356 (1994).
  19. T. Aarup, S. Groom, and P. M. Holligan, “The processing and interpretation of North Sea CZCS imagery,” Neth. J. Sea Res. 25, 3–9 (1990).
  20. A. Bricaud and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanol. Acta 7, 33–50 (1987).
  21. F. M. Guan, J. Pelaez, and R. H. Stewart, “The atmospheric correction and measurement of chlorophyll concentration using the Coastal Zone Color Scanner,” Limnol. Oceanogr. 30, 273–285 (1985).
  22. P. E. Land and J. D. Haigh, “Atmospheric correction over case 2 waters with an iterative fitting algorithm,” Appl. Opt. 35, 5443–5451 (1996).
  23. R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” presented at Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998. Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).
  24. J. Aiken and G. Moore, “MERIS algorithm theoretical basis document: case 2 (S) bright pixel atmospheric correction,” Rep. PO-TN-MEL-GS-0005 (Plymouth Marine Laboratory, Plymouth, UK, 1997).
  25. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
  26. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
  27. H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33, 7754–7763 (1994).
  28. M. Wang, “Atmospheric correction of ocean color sensors: computing atmospheric diffuse transmittance,” Appl. Opt. 38, 451–455 (1999).
  29. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
  30. K. Ding and H. R. Gordon, “Analysis of the influence of O2 A band absorption on atmospheric correction of ocean color imagery,” Appl. Opt. 34, 8363–8374 (1995).
  31. C. H. Whitlock, L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris, and E. A. Gurganis, “Comparison of reflectance with backscatter and absorption parameters for turbid waters,” Appl. Opt. 20, 1696–1703 (1981).
  32. S. Ouillon, P. Forget, J. M. Froidefond, and J. J. Naudin, “Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhone River plume,” Mar. Technol. Soc. J. 31, 15–20 (1997).
  33. G. J. Prangsma and J. N. Roozekrans, “Using NOAA AVHRR imagery in assessing water quality parameters,” Int. J. Remote Sens. 10, 811–818 (1989).
  34. J. M. Andre and A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited,” Oceanol. Acta 14, 3–22 (1991).
  35. R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Monograph Rep. 10 (International Union for Geodesy and Geophysics, Paris, 1961).
  36. K. F. Palmer and D. J. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
  37. G. Fu, K. S. Baith, and C. R. McClain, “SeaDAS: The SeaWiFS data analysis system,” presented at the 4th Pacific Ocean Remote Sensing Conference, Qingdao, China, 28–31 July 1998.
  38. C. F. Jago, A. J. Bale, M. O. Green, M. J. Howarth, S. E. Jones, I. N. McCave, G. E. Millward, A. W. Morris, A. A. Rowden, and J. J. Williams, “Resuspension processes and seston dynamics, southern North Sea,” in Understanding the North Sea System, H. Charnock, K. R. Dyer, J. M. Huthnance, P. S. Liss, J. H. Simpson, and P. B. Tett, eds. (Chapman & Hall, London, 1994), pp. 97–113.
  39. I. J. A. Althuis, J. Vogelzang, M. R. Wernand, S. J. Shimwell, W. W. C. Gieskes, R. E. Warnock, J. Kromkamp, R. Wouts, and W. Zevenboom, “On the colour of case II waters: Particulate matter North Sea,” Rep. 95–21B (Beleidscommissie Remote Sensing, Delft, The Netherlands, 1996).
  40. C. Lancelot, V. Rousseau, G. Billen, and D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea and North Sea, E. Ozsoy and A. Mikaelyan, eds. (Kluwer Scientific, Dordrecht, The Netherlands, 1997), pp. 437–454.
  41. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 9, 10–16 (1998).
  42. C. R. McClain, K. Arrigo, W. E. Esaias, M. Darzi, F. S. Patt, R. H. Evans, J. W. Brown, C. W. Brown, R. A. Barnes, and L. Kumar, “SeaWiFS algorithms, Part 1,” SeaWiFS Tech. Rep. 28, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1995).
  43. B. A. Eckstein and J. J. Simpson, “Cloud screening Coastal Zone Color Scanner images using channel 5,” Int. J. Remote Sens. 12, 2359–2377 (1991).
  44. H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1132 (1999).
  45. J. F. Schalles, F. R. Schiebe, P. J. Starks, and W. W. Troeger, “Estimation of algal and suspended sediment loads (singly and combined) using hyperspectral sensors and integrated mesocosm experiments,” in 4th International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. I, pp. 247–258.
  46. J. F. Schalles, A. T. Sheil, J. F. Tycast, J. J. Alberts, and Y. Z. Yacobi, “Detection of chlorophyll, seston and dissolved organic matter in the estuarine mixing zone of Georgia coastal plain rivers,” in 5th International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1998), Vol. II, pp. 315–324.
  47. S. Tassan and G. M. Ferrari, “Proposal for the measurement of backward and total scattering by mineral particles suspended in water,” Appl. Opt. 34, 8345–8353 (1995).
  48. J. Kromkamp and R. Wouts, “Particulate matter North Sea plus,” Rep. NUSP 98–04 (Beleidscommissie Remote Sensing, Delft, The Netherlands, 1998).
  49. G. Zibordi, V. Barale, G. M. Ferrari, N. Hoepffner, D. v. d. Linde, L. Alberotanza, P. Cova, and C. Ramasco, “Coastal atmosphere and sea time-series project (CoASTS),” in Third International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), Vol. II, pp. 96–100.
  50. R. P. Stumpf and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary,” J. Geophys. Res. 94, 14,363–14,371 (1989).
  51. R. J. Vos, M. Villars, J. N. Roozekrans, S. W. M. Peters, and W. v. Raaphorst, “RESTWAQ 2, Part 1. Integrated monitoring of total suspended matter in the Dutch coastal zone,” Rep. NRSP-2 98–08 (Beleidscommissie Remote Sensing, Delft, The Netherlands, 1998).
  52. I. J. A. Althuis and S. Shimwell, “Modelling of remote sensing reflectance spectra for suspended matter concentration detection in coastal waters,” Adv. Remote Sens. 4, 53–59 (1995).
  53. A. G. Dekker, “Detection of water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. dissertation (Vrije Universiteit, Amsterdam, The Netherlands, 1993).
  54. R. Doerffer, “Imaging spectroscopy for detection of chlorophyll and suspended matter,” in Imaging Spectroscopy: Fundamentals and Prospective Applications, F. Toselli and J. Bodechtel, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 215–257.
  55. R. A. Neville and J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll a fluorescence,” J. Geophys. Res. 82, 3487–3493 (1977).
  56. A. Bricaud, C. Roesler, and J. R. V. Zaneveld, “In situ methods for measuring the inherent optical properties of ocean waters,” Limnol. Oceanogr. 40, 393–410 (1995).
  57. W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
  58. R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, and H. H. Zwick, “Optical water quality model of Lake Ontario. 1. Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario,” Appl. Opt. 20, 1696–1703 (1981).
  59. R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
  60. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, and T. Svitek, “SeaWIFS prelaunch radiometric calibration and spectral characterization,” SeaWiFS Tech. Rep. 22, NASA Tech. Memo. 104566 (NASA, Greenbelt, Md., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited