OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 6 — Feb. 20, 2000
  • pp: 919–932

Micromechanics-based wavelength-sensitive photonic beam control architectures and applications

Nabeel A. Riza and Sarun Sumriddetchkajorn  »View Author Affiliations


Applied Optics, Vol. 39, Issue 6, pp. 919-932 (2000)
http://dx.doi.org/10.1364/AO.39.000919


View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micromechanics-based wavelength-sensitive photonic delay and amplitude control modules are introduced for multiwavelength photonic applications such as hardware-compressed beam forming in phased-array antennas, timing-error compensation in high-speed long-haul fiber-optic communication networks, and pulse synchronization in photonic analog-to-digital converters and space–time code division multiplexed decoders. The basic delay structure relies on a single-circulator compact reflective parallel path design that features polarization insensitivity, independently controllable optical time-delay and amplitude settings, and fiber compatibility. Switched fiber time delays are proposed that use various micromechanical mechanisms such as mechanically stretched fiber Bragg gratings with comb-drive translational stages or magnetic levitation-based stretchers. Additional, shorter-duration variable time delays are obtained by means of the translational motion of external mirrors and the inherent delays in the zigzag reflective path geometry of the bulk-optic thin-film interference filter-based wavelength multiplexer used in our proposed design. Experiments are performed to test these concepts.

© 2000 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(200.3050) Optics in computing : Information processing

History
Original Manuscript: March 16, 1999
Revised Manuscript: September 28, 1999
Published: February 20, 2000

Citation
Nabeel A. Riza and Sarun Sumriddetchkajorn, "Micromechanics-based wavelength-sensitive photonic beam control architectures and applications," Appl. Opt. 39, 919-932 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-6-919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  2. S. L. Danielsen, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on performance,” J. Lightwave Technol. 15, 219–227 (1997). [CrossRef]
  3. L. Bergman, J. Morookian, C. Yeh, “An all-optical long-distance multi-Gbytes/s bit-parallel WDM single-fiber link,” J. Lightwave Technol. 16, 1577–1582 (1998). [CrossRef]
  4. J. D. Moores, K. L. Hall, S. M. Lepage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995). [CrossRef]
  5. A. S. Bhushan, F. Coppinger, B. Jalali, S. Wang, H. F. Fetterman, “150 Gsample/s wavelength division sampler with time-stretched output,” Electron. Lett. 34, 474–475 (1998). [CrossRef]
  6. J. P. Gordon, H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]
  7. Y. Kodama, A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon–Haus effect,” Opt. Lett. 17, 31–33 (1992). [CrossRef] [PubMed]
  8. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575–1577 (1992). [CrossRef] [PubMed]
  9. C. Yeh, L. Bergman, J. Morookian, S. Monacos, “Generation of time-aligned picosecond pulses on wavelength-division-multiplexed beams in a nonlinear fiber,” Phys. Rev. E 7, 6135–6139 (1998). [CrossRef]
  10. J. Spring, R. S. Tucker, “Photonic 2 × 2 packet switch with input buffers,” Electron. Lett. 29, 284–285 (1993). [CrossRef]
  11. W. D. Zhong, R. S. Tucker, “Wavelength routing–based photonic packet buffers and their applications in photonic packet switching systems,” J. Lightwave Technol. 16, 1737–1744 (1998). [CrossRef]
  12. Z. Haas, “The staggering switch: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925–936 (1993). [CrossRef]
  13. R. Khosravani, M. I. Hayee, B. Hoanca, A. R. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photon. Technol. Lett. 11, 134–136 (1999). [CrossRef]
  14. N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994). [CrossRef]
  15. N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal–based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997). [CrossRef]
  16. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145, 15–20 (1998). [CrossRef]
  17. E. Ackerman, S. Wanuga, D. Kasemset, “Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer,” in IEEE International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1992), Part 2, pp. 681–684.
  18. S. C. Barden, Fiber Optics in Astronomical Applications, Proc. SPIE2476, (1995). [CrossRef]
  19. N. A. Riza, “Advanced novel photonic instrumentation for adaptive and interferometric astronomy,” in Space Telescopes and Instruments IV, P. V. Bely, J. B. Breckinridge, eds., Proc. SPIE2807, 335–341 (1996). [CrossRef]
  20. M. Colavita, “Interferometry at Keck telescopes creates powerful array,” (SPIE, Bellingham, Wash., March1998).
  21. N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant polarization insensitive photonic delay line architecture using two dimensional digital micromirror devices,” Opt. Commun. 160, 311–320 (1999). [CrossRef]
  22. N. A. Riza, S. Sumriddetchkajorn, “Fault tolerant dense multiwavelength add-drop filter with a two dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998). [CrossRef]
  23. N. A. Riza, S. Sumriddetchkajorn, “Two dimensional digital micromirror device-based 2 × 2 fiber-optic switch array,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 413–414.
  24. N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault tolerant multiwavelength programmable fiber-optic attenuator using a two dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999). [CrossRef]
  25. D. Sadot, E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 39(12), 50–55 (1998). [CrossRef]
  26. B. Broberg, P. J. Rigole, S. Nilson, M. Renlund, L. Andersson, “Widely tunable semiconductor lasers,” in IEEE LEOS Annual Meeting, (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 151–152.
  27. N. A. Riza, J. E. Hershey, A. A. Hassan, “A novel multi-dimensional coding scheme for multi-access optical communications,” in Multigigabit Fiber Communications, L. G. Kazovsky, K. Liu eds., Proc. SPIE1787, 110–120 (1992). [CrossRef]
  28. N. A. Riza, J. E. Hershey, A. A. Hassan, “Signaling system for multiple-access laser communications and interference protection,” Appl. Opt. 32, 1965–1972 (1993). [CrossRef] [PubMed]
  29. N. A. Riza, J. E. Hershey, A. A. Hassan, “Optical communication system using coplanar light modulators,” U. S. patent5,410,147 (25April1995).
  30. C. Jung, R. King, R. Jäger, M. Grabherr, F. Eberhard, R. Michalzik, K. J. Ebeling, “Highly efficient oxide confined VCSEL arrays for parallel optical interconnects,” presented at the OC’98 Optics in Computing meeting, Brugge, Belgium, June 1998.
  31. L. J. Hornbeck, “Digital light processing and MEMS: reflecting the digital display needs of the networked society,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 2–13 (1996). [CrossRef]
  32. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1995), Chap. 3.
  33. Technical data sheet for the optical circulator (Kaifa Technology, Inc., 388 Oakmead Parkway, Sunnyvale, Calif., 1998).
  34. Technical data sheet for the four-channel WDM multiplexer (Corning OCA Corporation, 111 Locke Dr., Marlborough, Mass., 1998).
  35. Product catalog for the 132-channel Stimax WDM (ISA Jobin–Yvon Horiba Group, 3880 Park Ave., Edison, N.J., 1998).
  36. K. Okamoto, K. Syuto, H. Takahashi, Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25GHz channel spacing,” Electron. Lett. 32, 474–475 (1996). [CrossRef]
  37. Z. J. Sun, K. A. McGreer, J. N. Broughton, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett. 10, 90–92 (1998). [CrossRef]
  38. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997). [CrossRef]
  39. Product catalog (Bragg Photonics, Inc., Montreal, Quebec, Canada, 1996).
  40. G. A. Ball, W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett. 19, 1979–1981 (1994). [CrossRef] [PubMed]
  41. L. S. Fan, Y. C. Tai, R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Electron. Dev. ED-35, 724–730 (1988). [CrossRef]
  42. E. R. Laithwaite, Transport without Wheels (Elek Science, London, 1977).
  43. J. R. Powell, G. T. Danby, “Maglav vehicles: raising transportation advances off the ground,” IEEE Potentials 15(4), 7–12 (1996). [CrossRef]
  44. A. Desai, S. W. Lee, Y. C. Tai, “A MEMS electrostatic particle transportation system,” in Conference Proceedings of the IEEE Micro Electro Mechanical Systems Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 121–126.
  45. Y.-K. Kim, M. Katsurai, H. Fujita, “Levitation-type synchronous microactuator using the Meissner effect of high-Tc superconductors,” Sensors Actuators A 29, 143–150 (1991). [CrossRef]
  46. Product data 915 (Canadian Instrumentation and Research, Ltd., 115 Appleby Line Unit E8, Burlington, Ontario, Canada, 1998).
  47. BellCore TR-NWT-001073, “Generic requirements for fiber optic switches,” Issue 1 (Bellcore, Morristown, N.J., 1January1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited