OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 9 — Mar. 20, 2000
  • pp: 1382–1388

Phase-demodulation error of a fiber-optic Fabry–Perot sensor with complex reflection coefficients

James M. Kilpatrick, William N. MacPherson, James S. Barton, and Julian D. C. Jones  »View Author Affiliations


Applied Optics, Vol. 39, Issue 9, pp. 1382-1388 (2000)
http://dx.doi.org/10.1364/AO.39.001382


View Full Text Article

Enhanced HTML    Acrobat PDF (140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of reflector losses attracts little discussion in standard treatments of the Fabry–Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry–Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal–dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

© 2000 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

History
Original Manuscript: October 25, 1999
Published: March 20, 2000

Citation
James M. Kilpatrick, William N. MacPherson, James S. Barton, and Julian D. C. Jones, "Phase-demodulation error of a fiber-optic Fabry–Perot sensor with complex reflection coefficients," Appl. Opt. 39, 1382-1388 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-9-1382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Kao, H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry–Perot pressure sensor,” Opt. Lett. 21, 615–617 (1996). [CrossRef] [PubMed]
  2. C. E. Lee, R. A. Atkins, H. F. Taylor, “Performance of a fiber-optic temperature sensor from -200 °C to 1050 °C,” Opt. Lett. 13, 1038–1040 (1988). [CrossRef] [PubMed]
  3. H. Singh, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997). [CrossRef]
  4. B. Zhao, Y. Surrel, “Phase shifting: six-sample self-calibrating algorithm insensitive to the second harmonic in the fringe signal,” Opt. Eng. 34, 2821–2822 (1995). [CrossRef]
  5. M. Hamy, “Fringes by reflection from silvered glass,” J. Phys. Radium 5, 789–809 (1906).
  6. J. Holden, “Multiple-beam interferometry: intensity distribution in the reflected system,” Proc. Phys. Soc. 62, 405–417 (1949). [CrossRef]
  7. P. G. Kard, “Theory of Optical Coatings,” Izv. Akad. Nauk Est. SSR, 12, 359 (1969)[reviewed by Z. Knittl in Optics of Thin Films (Wiley, New York, 1976)].
  8. M. N. Inci, S. R. Kidd, J. S. Barton, J. D. C. Jones, “Fabrication of single-mode fibre optic Fabry–Perot interferometers using fusion spliced titanium dioxide optical coatings,” J. Meas. Sci. Technol. 3, 678–684 (1992). [CrossRef]
  9. H. A. MacLeod, Thin Film Optical Filters, 2nd ed. (Hilger/McGraw-Hill, New York, 1986). [CrossRef]
  10. J. J. Monzón, L. L. Sánchez-Soto, E. Bernabeu, “Influence of coating thickness on the performance of a Fabry–Perot interferometer,” Appl. Opt. 30, 4126–4132 (1991). [CrossRef]
  11. W. N. MacPherson, S. R. Kidd, J. S. Barton, J. D. C. Jones, “Phase demodulation in optical fibre Fabry–Perot sensors with inexact phase steps,” Proc. Inst. Electr. Eng. Optoelectron. 144(3) , 130–133 (1997). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 13, pp. 629–633.
  13. C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988). [CrossRef]
  14. A. R. Cownie, “Phase condition for light incident normallyon a semireflecting film,” J. Opt. Soc. Am. 47, 132–136 (1957). [CrossRef]
  15. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955), Chap. 4, p. 58.
  16. J. M. Bennet, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3017 (1989). [CrossRef]
  17. A. Ezbiri, R. P. Tatam, “Passive signal processing for a miniature Fabry–Perot interferometric sensor with a multimode laser-diode source,” Opt. Lett. 20, 1818–1820 (1995). [CrossRef]
  18. P. Hariharan, “Digital phase stepping interferometry: effects of multiply reflected beams,” Appl. Opt. 26, 2506–2507 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited