OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 9 — Mar. 20, 2000
  • pp: 1426–1429

Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D 2 line

Steve Lecomte, Emmanuel Fretel, Gaetano Mileti, and Pierre Thomann  »View Author Affiliations

Applied Optics, Vol. 39, Issue 9, pp. 1426-1429 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extended-cavity diode laser at 852 nm has been built especially for the purpose of cooling and probing cesium atoms. It is a compact, self-aligned, and continuously tunable laser source having a 100-kHz linewidth and 60-mW output power. The electronic control of the laser frequency by the piezodriven external reflector covers a 4.5-kHz bandwidth, allowing full compensation of acoustic frequency noise without any adverse effect on the laser intensity noise. We locked this laser to Doppler-free resonances on the cesium D2 line by using the Zeeman modulation technique, resulting in the frequency and the intensity of the laser beam being unmodulated. We also tuned the locked laser frequency over a span of 120 MHz by using the dc Zeeman effect to shift the F = 4–F′ = 5 reference transition.

© 2000 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(260.7490) Physical optics : Zeeman effect
(300.6460) Spectroscopy : Spectroscopy, saturation

Original Manuscript: May 21, 1999
Revised Manuscript: December 20, 1999
Published: March 20, 2000

Steve Lecomte, Emmanuel Fretel, Gaetano Mileti, and Pierre Thomann, "Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line," Appl. Opt. 39, 1426-1429 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993). [CrossRef]
  2. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981). [CrossRef] [PubMed]
  3. A. M. Akulshin, V. V. Nikitin, V. A. Sautenkov, V. V. Vasiliev, V. L. Velichansky, E. K. Yurkin, A. S. Zibrov, “Frequency stabilization of highly coherent AlGaAs diode lasers,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology (Springer-Verlag, Berlin, 1989), pp. 236–241. [CrossRef]
  4. T. Ikegami, S. Ohshima, M. Ohtsu, “Frequency stabilization of laser diodes to the Cs-D2 line with the Zeeman modulation method,” Jpn. J. Appl. Phys. 28, L1839–L1841 (1989). [CrossRef]
  5. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]
  6. N. Dimarcq, Laboratoire de l’Horloge Atomique de l’Universite Paris-Sud, bâtiment 221, 15 rue Georges Clémenceau, 91405 Orsay cedex, France (private communication, 1998).
  7. T. P. Dineen, C. D. Wallace, P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282 (1991). [CrossRef]
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode-laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited