OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 9 — Mar. 20, 2000
  • pp: 1449–1453

Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy

Andrew C. R. Pipino  »View Author Affiliations

Applied Optics, Vol. 39, Issue 9, pp. 1449-1453 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical resonator is characterized that employs both ultrahigh-reflective coated surfaces and total internal reflection to enable cavity ringdown spectroscopy of surfaces, films, and liquids. The monolithic folded design possesses a polarization-independent finesse that allows polarization-dependent phenomena, such as molecular orientation, to be probed. Although a restricted bandwidth (∼15% of the design wavelength) results from use of reflective coatings, the resonator provides high sensitivity and facile operation. A minimum detectable absorption of 2.2 × 10-6 was obtained for single laser shots by use of multimode excitation at 530 nm with an excimer-pumped, pulsed dye laser.

© 2000 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.1030) Spectroscopy : Absorption

Original Manuscript: July 20, 1999
Revised Manuscript: November 19, 1999
Published: March 20, 2000

Andrew C. R. Pipino, "Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy," Appl. Opt. 39, 1449-1453 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998). [CrossRef]
  3. K. W. Busch, M. A. Busch, eds., Cavity-Ringdown Spectroscopy (Oxford U. Press, New York, 1999). [CrossRef]
  4. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with 6, 7, 8, stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  5. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  6. M. Moretti, “Ultra-low loss measurements for high-performance optics,” Laser Focus 23, 22–26 (1987).
  7. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104–112 (1997). [CrossRef]
  8. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997). [CrossRef]
  9. A. C. R. Pipino, “Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. De Groot, ed., Proc. SPIE3535, 57–67 (1998). [CrossRef]
  10. R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring-down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999). [CrossRef]
  11. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999). [CrossRef]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  13. N. J. Brown, “Preparation of ultrasmooth surfaces,” Annu. Rev. Mater. Sci. 16, 371–388 (1986). [CrossRef]
  14. S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1993).
  15. N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).
  16. Identification of specific commercial products in this paper is provided to specify procedures completely. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that such products have necessarily been identified as the best available for the purpose.
  17. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999). [CrossRef]
  18. D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990). [CrossRef]
  19. I. M. Ward, “Determination of molecular orientation by spectroscopic methods,” in Characterization of Polymers in the Solid State 1: Part A, NMR and Other Spectroscopic Methods, H. H. Kausch, H. G. Zachmann, A. Apicella, eds., Volume 66 of Advances in Polymer Science (Springer-Verlag, Berlin, 1985).
  20. N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in supported phospolipid monolayers detected by the dichroism of fluorescence excited by polarized evanescent illumination,” Biophys. J. 46, 739–747 (1984). [CrossRef] [PubMed]
  21. C.-P. Lafrance, A. Nabet, R. E. Prud’homme, M. Pézolet, “On the relationship between the order parameter [P2(cosθ)] and the shape of orientation distributions,” Can. J. Chem. 73, 1497–1505 (1995). [CrossRef]
  22. G. Kortum, H. Koffer, “Diffuse reflexionsspektren von absorbiertem jod,” Ber. Bunsenges. Phys. Chem. 67, 67–75 (1963).
  23. A. Charvat, S. A. Kovalenko, B. Abel, “Attenuated total internal reflection spectroscopy with an intracavity laser absorption spectrometer,” Spectrochim. Acta Part A 55, 1553–1567 (1999). [CrossRef]
  24. J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1967).
  25. R. K. Iler, Chemistry of Silica (Wiley, New York, 1979).
  26. I. D. Aggarwal, G. Lu, eds., Fluoride Glass Fiber Optics (Academic, Boston, Mass., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited