OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 4, Iss. 11 — Nov. 1, 1965
  • pp: 1488–1493

Transmittance of Optical Materials at High Temperatures in the 1-μ to 12-μ Range

D. T. Gillespie, A. L. Olsen, and L W. Nichols  »View Author Affiliations

Applied Optics, Vol. 4, Issue 11, pp. 1488-1493 (1965)

View Full Text Article

Enhanced HTML    Acrobat PDF (672 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmittance measurements of optical materials were made at 25°C, 100°C, 200°C, 300°C, and 400°C in the 1-μ to 12-μ range with a Perkin-Elmer Model 21 spectrophotometer. A continuous proportioning temperature control system, using a modified Loyola LC-2 4KVA Power Manipulator in conjunction with a Wheelco Capacitrol, provided a given temperature level in high-temperature cells. The following materials, which are dielectrics and semiconductors of potential use as windows and IRDOMES in optical systems at high temperatures, were selected: Corning glasses, Nos. 0160, 8363, and 7905; fused, water-free quartz, type 106, General Electric; Barr and Stroud calcium aluminate, 37A and 39A; sapphire, Linde Company; Irtran-1 and Irtran-2; silver chloride; sodium chloride; silicon; and germanium. A final transmittance trace, corrected for cell characteristics, of each optical material at a given temperature was obtained by drawing a smooth curve through the point-by-point adjustments of the specimen spectrum. The transmittance of dielectrics remains relatively unaffected up to 400°C. Optical materials of this class are restricted in use at the higher temperatures only in the shift of the long-wavelength transmittance limit. With the semiconductors silicon and germanium, the absorption edge is shifted to longer wavelengths, and the over-all transmittance is greatly reduced with increase of temperature.

© 1965 Optical Society of America

Original Manuscript: January 4, 1965
Published: November 1, 1965

D. T. Gillespie, A. L. Olsen, and L W. Nichols, "Transmittance of Optical Materials at High Temperatures in the 1-μ to 12-μ Range," Appl. Opt. 4, 1488-1493 (1965)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Borough, Boeing Airplane Company, Seattle, Wash., Preliminary Information (1957).
  2. G. E. Grantham, Phys. Rev. 16, 565 (1920). [CrossRef]
  3. F. G. Grove, P. E. Jellyman, J. Soc. Glass Technol. 39, 3 (1955).
  4. A. J. Holland, W. E. S. Turner, J. Soc. Glass Technol. 25, 164 (1941).
  5. E. D. McAlister, Proc. Infrared Inform. Symp. 4, 139 (1959).
  6. H. O. McMahon, J. Am. Ceram. Soc. 34, 91 (1951). [CrossRef]
  7. N. F. Beardsley, Proc. Infrared Inform. Symp. 1, 47 (1956).
  8. D. Mergerian, Proc. Infrared Inform. Symp. 4, 146 (1959).
  9. C. J. Parker, M. E. Nordberg, J. Opt. Soc. Am. 49, 856 (1959). [CrossRef]
  10. A. L. Olsen, Anal. Chem. 30, 158 (1958). [CrossRef]
  11. D. T. Gillespie, A. L. Olsen, Instr. Control Systems 37, 104 (1964).
  12. A. L. Olsen, K. B. LaBaw, L. W. Nichols, J. Opt. Soc. Am. 54, 813 (1964). [CrossRef]
  13. H. O. McMahon, J. Opt. Soc. Am. 40, 376 (1950). [CrossRef]
  14. A. L. Olsen, L. W. Nichols, E. Regelson, NAVORD Rept. 5584 (1957), China Lake, Calif.
  15. S. S. Ballard, K. A. McCarthy, W. L. Wolfe, IRIA State-of-the-Art Rept. 2389-11-S (1959), The University of Michigan, Ann Arbor, Mich.
  16. Ref. 15, Supplement, 2389-11-S1 (1961).
  17. T. S. Moss, Optical Properties of Semiconductors (Butterworths, London, 1959), pp. 113–150.
  18. H. L. Hackforth, Infrared Radiation (McGraw-Hill, New York, 1960), pp. 107–137.
  19. M. R. Holter, S. Nudelman, G. H. Suits, W. L. Wolfe, G. J. Zissis, Fundamentals of Infrared Technology (Macmillan, New York, 1962), pp. 121–140.
  20. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, New York, 1962), pp. 119–162.
  21. H. Y. Fan, M. L. Shepard, W. Spitzer, Photoconductivity Conference (Wiley, New York, 1954), p. 193.
  22. B. Lax, S. Zwerdling, Progress in Semiconductors (Wiley, New York, 1960), Vol. 5, p. 226.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited