OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 118–124

Modeling parameters for the spectral behavior of infrared frequency-selective surfaces

Irina Puscasu, W. L. Schaich, and Glenn D. Boreman  »View Author Affiliations


Applied Optics, Vol. 40, Issue 1, pp. 118-124 (2001)
http://dx.doi.org/10.1364/AO.40.000118


View Full Text Article

Acrobat PDF (1382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Comparisons of experiment and theory are presented for transmission spectra over the range 2–15 μm of a set of frequency-selective surfaces consisting of arrays of simple dipole patches of aluminum on or in silicon. The arrays are fabricated by direct-write electron-beam lithography. Important parameters controlling the spectral shape are identified, such as dipole length, spacing, resistance, and dielectric surroundings. The separate influence of these variables is exhibited. Encouraging agreement between simple model calculations and the measurements is found.

© 2001 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.3060) Physical optics : Infrared

Citation
Irina Puscasu, W. L. Schaich, and Glenn D. Boreman, "Modeling parameters for the spectral behavior of infrared frequency-selective surfaces," Appl. Opt. 40, 118-124 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-1-118


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces—a review,” IEEE Proc. 76, 1593–1615 (1988).
  2. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press Ltd., Taunton, UK, 1997).
  3. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  4. F. O’Nians and J. Matson, “Antenna feed system utilizing polarization independent frequency selective intermediate reflector,” U.S. patent 3,231,892 (25 January 1966).
  5. B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antennas Propag. AP-22, 804–807 (1974).
  6. R. Pous and D. M. Pozar, “FSS using aperture coupled microstrip patches,” Electron. Lett. 25, 1136–1138 (1989).
  7. P. Vogel and L. Genzel, “Transmission and reflection of metallic mesh in the far infrared,” Infrared Phys. 4, 257–262 (1964).
  8. P. A. R. Ade, A. E. Costley, C. T. Cunningham, C. L. Mok, G. L. Neill, and T. J. Parker, “Free-standing grids wound 5 μm diameter wire for spectroscopy at far-infrared wavelengths,” Infrared Phys. 19, 599–601 (1979).
  9. A. Mitsuishi, Y. Otsuka, S. Fujita, and H. Yoshinaga, “Metal mesh filters in the far infrared region,” Jpn. J. Appl. Phys. 9, 574–577 (1963).
  10. G. D. Holah and S. D. Smith, “Far-infrared interference filters,” J. Phys. E 10, 101–111 (1977).
  11. A. E. Costley, K. H Hursey, G. F. Neill, and J. W. M. Ward, “Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67, 979–982 (1977).
  12. C. L. Mok, W. G. Champers, T. J. Parker, and A. E. Costley, “Far-infrared performance and application of free-standing grids wound from 5μm diameter tungsten wire,” Infrared Phys. 19, 437–442 (1979).
  13. R. Ulrich, T. J. Bridges, and M. A. Pollack, “Variable metal mesh coupler for far infrared lasers,” Appl. Opt. 9, 2511–2516 (1970).
  14. R. Ulrich, K. F. Renk, and L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theory Tech. MTT-11, 363–367 (1963).
  15. V. Ya. Balakhanov, “Multiray radiointerferometer for plasma diagnostics,” Sov. Phys. Tech. Phys. 10, 96–99 (1965).
  16. T. Schimert, M. E. Koch, and C. H. Chan, “Analysis of scattering from frequency-selective surfaces in the infrared,” J. Opt. Soc. Am. A 7, 1545–1553 (1990).
  17. T. R. Schimert, A. J. Brouns, C. H. Chan, and R. Mittra, “Investigation of millimeter-wave scattering from frequency selective surfaces,” IEEE Trans. Microwave Theory Tech. 39, 315–322 (1991).
  18. S. T. Chase and R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
  19. J. A. Reed and D. M. Byrne, “Using periodicity to control spectral characteristics of an array of narrow slots,” IEEE Antennas Propag. Soc. AP-S Int. Symp. 4, 2376–2379(1997).
  20. I. Puscasu, D. Spencer, and G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39, 1570–1574 (2000).
  21. T. Hirata, “Evolution of the infra-red vibrational modes upon thermal oxidation of Si single crystals,” J. Phys. Chem. Solids 58, 1497–1501 (1997).
  22. W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101, 1264–1268 (1956).
  23. M. K. Gunde and B. Aleksandrov, “Infrared optical constants and roughness factor functions determination: the HTHRTR method,” Appl. Opt. 30, 3186–3196 (1991).
  24. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975).
  25. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Office of Naval Research, Department of the Navy, Washington, D.C., 1978), pp. 5–92.
  26. W. L. Schaich is preparing a manuscript to be called “On the theory of frequency selective surfaces.”
  27. J. Van Bladel, Singular Electromagnetic Fields and Sources (Oxford University, Oxford, UK, 1991).
  28. R. F. Harrington, Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Waves (Institute of Electrical and Electronics Engineers, New York, 1992).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
  31. R. W. Wood, “Anomalous diffractive gratings,” Phys. Rev. 48, 928–936 (1935).
  32. R. H. Ott, R. G. Kouyoujian, and L. Peters, Jr, “Scattering by a two-dimensional periodic array of narrow plates,” Radio Sci. 2, 1347–1359 (1967).
  33. C. Fumeaux, M. Gritz, I. Codreanu, W. L. Schaich, J. Gonzalez, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. 41, 271–281 (2000).
  34. We have not observed a structure attributable to a “λ” resonance. Such a resonance is not favorably excited by light at normal incidence.
  35. R. J. Luebbers and B. A. Munk, “Some effects of dielectric loading on periodic slot arrays,” IEEE Trans. Antennas Propag. AP-26, 536–542 (1978).
  36. P. Callaghan, E. A. Parker, and R. J. Langley, “Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces,” IEE Proc. Part H 138, 448–454 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited