OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 136–144

Grazing-incidence hyperboloid–hyperboloid designs for wide-field x-ray imaging applications

James E. Harvey, Andrey Krywonos, Patrick L. Thompson, and Timo T. Saha  »View Author Affiliations

Applied Optics, Vol. 40, Issue 1, pp. 136-144 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The classical Wolter type I grazing-incidence x-ray telescope consists of a paraboloidal primary mirror and a confocal hyperboloidal secondary mirror. This design exhibits stigmatic imaging on-axis but suffers from coma, astigmatism, field curvature, and higher-order aberrations such as oblique spherical aberration. Wolter–Schwarzschild designs have been developed that strictly satisfy the Abbe sine condition and thus exhibit no spherical aberration or coma. However, for wide-field applications such as the solar x-ray imager (SXI), there is little merit in a design with stigmatic imaging on-axis. Instead, one needs to optimize some area-weighted-average measure of resolution over the desired operational field of view. This has traditionally been accomplished by mere despacing of the focal plane of the classical Wolter type I telescope. Here we present and evaluate in detail a family of hyperboloid–hyperboloid grazing-incidence x-ray telescope designs whose wide-field performance is much improved over that of an optimally despaced Wolter type I and even somewhat improved over that of an optimally despaced Wolter–Schwarzschild design.

© 2001 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.2740) Optical design and fabrication : Geometric optical design
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors

Original Manuscript: May 26, 2000
Revised Manuscript: September 9, 2000
Published: January 1, 2001

James E. Harvey, Andrey Krywonos, Patrick L. Thompson, and Timo T. Saha, "Grazing-incidence hyperboloid–hyperboloid designs for wide-field x-ray imaging applications," Appl. Opt. 40, 136-144 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (Leipzig) 10, 94–114 (1952). [CrossRef]
  2. H. C. King, The History of the Telescope (Dover, New York, 1979).
  3. H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286–295 (1952). [CrossRef]
  4. B. Aschenbach, “X-ray telescopes,” Rep. Prog. Phys. 48, 579–629 (1985). [CrossRef]
  5. A. K. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sect. B 70, 945–949 (1957). [CrossRef]
  6. J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969). [CrossRef] [PubMed]
  7. J. D. Mangus, “Optical design of glancing incidence XUV telescopes,” Appl Opt. 9, 1019–1025 (1970). [CrossRef] [PubMed]
  8. L. P. VanSpeyroeck, R. C. Chase, “Design parameters of paraboloid–hyperboloid telescopes for x-ray astronomy,” Appl. Opt. 11, 440–445 (1972). [CrossRef]
  9. R. C. Chase, L. P. VanSpeyroeck, “Wolter–Schwarzschild telescopes for x-ray astronomy,” Appl. Opt. 12, 1042–1044 (1973). [CrossRef] [PubMed]
  10. R. C. Chase, “Aplanatic grazing incidence x-ray microscopes: design and performance,” Appl. Opt. 15, 3094–3098 (1976). [CrossRef] [PubMed]
  11. W. Werner, “Imaging properties of Wolter I type x-ray telescopes,” Appl. Opt. 16, 764–773 (1977). [CrossRef] [PubMed]
  12. C. E. Winkler, D. Korsch, “Primary aberrations for grazing incidence,” Appl. Opt. 16, 2464–2469 (1977). [CrossRef] [PubMed]
  13. W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979). [CrossRef]
  14. D. Korsch, Reflective Optics (Academic, Boston, 1991), Chap. 11, pp. 282–284.
  15. K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope,” Appl. Opt. 26, 4428–4432 (1987). [CrossRef] [PubMed]
  16. K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope. 2. Analytical study,” Appl. Opt. 27, 345–350 (1988). [CrossRef] [PubMed]
  17. T. T. Saha, “Transfer ray aberrations for paraboloid–hyperboloid telescopes,” Appl. Opt. 24, 1856–1863 (1985). [CrossRef]
  18. T. T. Saha, “Transfer ray aberrations of Wolter type I telescopes,” in Grazing Incidence Optics, J. F. Osantowski, L. Van Speybroeck, eds., Proc. SPIE640, 10–19 (1986). [CrossRef]
  19. T. T. Saha, “General surface equations for glancing incidence telescopes,” Appl. Opt. 26, 658–663 (1987). [CrossRef] [PubMed]
  20. T. T. Saha, “Aberrations for grazing incidence telescopes,” Appl. Opt. 27, 1492–1498 (1988). [CrossRef] [PubMed]
  21. D. L. Shealy, T. T. Saha, “Formula for the rms blur circle radius of Wolter telescope based on aberration theory,” Appl. Opt. 29, 2433–2439 (1990). [CrossRef] [PubMed]
  22. P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).
  23. For more information see the following URL: http://www.focus-software.com/zemax/index.html .
  24. R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982). [CrossRef]
  25. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).
  26. V. N. Mahajan, “Optical Imaging and Aberrations Part I: Ray Geometrical Optics (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).
  27. L. P. VanSpeybroeck, “Einstein Observatory (HEAO B) mirror design and performance,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 2–11 (1979). [CrossRef]
  28. B. Aschenbach, “Design, construction, and performance of the ROSAT high-resolution mirror assembly,” Appl. Opt. 27, 1404–1413 (1988). [CrossRef] [PubMed]
  29. L. P. Van Speybroeck, “Grazing incidence optics for the U.S. High-Resolution X-Ray Astronomy program,” Opt. Eng. 27, 1398–1403 (1988).
  30. P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000). [CrossRef]
  31. D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985).
  32. C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992). [CrossRef]
  33. SXI Mirror Assembly Critical Design Review, Doc. VG P23–0021 (Raytheon Optical Systems, Danbury, Conn., 1998).
  34. O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).
  35. L. Golub, Solar-B X-ray Telescope (XRT), Doc. AO 98-OSS-05 (Smithonian Astrophysics Observatory, 60 Garden Street, Cambridge, Mass., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited