OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 157–166

Steady-state multispectral fluorescence imaging system for plant leaves

Moon S. Kim, James E. McMurtrey, Charles L. Mulchi, Craig S. T. Daughtry, Emmett W. Chappelle, and Yud-Ren Chen  »View Author Affiliations


Applied Optics, Vol. 40, Issue 1, pp. 157-166 (2001)
http://dx.doi.org/10.1364/AO.40.000157


View Full Text Article

Enhanced HTML    Acrobat PDF (4595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed description of a laboratory-based multispectral fluorescence imaging system (MFIS) for plant leaves. Fluorescence emissions with 360-nm excitation are captured at four spectral bands in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 680, and 740 nm, respectively. Preliminary experiments conducted with soybean leaves treated with a herbicide (DCMU) and short-term exposures to moderately elevated tropospheric ozone environment demonstrated the utilities of the newly developed MFIS. In addition, with the aid of fluorescence images of normal soybean leaves, several mechanisms governing the fluorescence emissions are discussed. Imaging results illustrate the versatility of fluorescence imaging, which provides information on the spatial variability of fluorescence patterns over leaf samples.

© 2001 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2140) Spectroscopy : Emission
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: June 13, 2000
Revised Manuscript: October 4, 2000
Published: January 1, 2001

Citation
Moon S. Kim, James E. McMurtrey, Charles L. Mulchi, Craig S. T. Daughtry, Emmett W. Chappelle, and Yud-Ren Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-1-157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).
  2. E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).
  3. J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994). [CrossRef]
  4. L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).
  5. U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977). [CrossRef]
  6. H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988). [CrossRef]
  7. E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984). [CrossRef]
  8. E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser-induced fluorescence of green plants. 2. LIF changes caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–134 (1984). [CrossRef]
  9. E. W. Chappelle, F. M. Wood, W. W. Newcomb, J. E. McMurtrey, “Laser-induced fluorescence of green plants. 3. LIF spectral signatures of five major plant types,” Appl. Opt. 24, 74–80 (1985). [CrossRef] [PubMed]
  10. M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991). [CrossRef]
  11. M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).
  12. F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994). [CrossRef]
  13. M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996). [CrossRef]
  14. W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991). [CrossRef]
  15. H. H. Kim, “New algae mapping technique by the use of an airborne laser fluoresensor,” Appl. Opt. 12, 1454–1459 (1973). [CrossRef] [PubMed]
  16. F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of airborne detection of laser induced fluorescence from green plants,” Appl. Opt. 22, 2991–2998 (1983). [CrossRef]
  17. G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.
  18. K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987). [CrossRef] [PubMed]
  19. S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998). [CrossRef] [PubMed]
  20. C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997). [CrossRef]
  21. J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).
  22. H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996). [CrossRef]
  23. M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998). [CrossRef]
  24. C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).
  25. M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).
  26. J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.
  27. S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981). [CrossRef] [PubMed]
  28. L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993). [CrossRef]
  29. L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997). [CrossRef]
  30. C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited