OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 20–33

Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing

Aric B. Shorey, Stephen D. Jacobs, William I. Kordonski, and Roger F. Gans  »View Author Affiliations

Applied Optics, Vol. 40, Issue 1, pp. 20-33 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (2002 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advances in the study of the magnetorheological finishing (MRF) have allowed for the characterization of the dynamic yield stress of the magnetorheological (MR) fluid, as well as the nanohardness (Hnano) of the carbonyl iron (CI) used in MRF. Knowledge of these properties has allowed for a more complete study of the mechanisms of material removal in MRF. Material removal experiments show that the nanohardness of CI is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids or when nonmagnetic abrasives are present. The hydrated layer created by the chemical effects of water is shown to change the way material is removed by hard CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid. Drag force measurements and atomic force microscope scans demonstrate that, when added to a MR fluid, nonmagnetic abrasives (cerium oxide, aluminum oxide, and diamond) are driven toward the workpiece surface because of the gradient in the magnetic field and hence become responsible for material removal. Removal rates increase with the addition of these polishing abrasives. The relative increase depends on the amount and type of abrasive used.

© 2001 Optical Society of America

OCIS Codes
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing

Original Manuscript: May 8, 2000
Revised Manuscript: September 11, 2000
Published: January 1, 2001

Aric B. Shorey, Stephen D. Jacobs, William I. Kordonski, and Roger F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993), Chap. 1.
  2. K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993). [CrossRef]
  3. J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).
  4. T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.
  5. A. Kaller, “On the polishing of glass, particularly the precision polishing of optical surfaces,” Glastech. Ber. 64, 241–252 (1991).
  6. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).
  7. W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.
  8. W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.
  9. T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993). [CrossRef]
  10. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 20, 152–171 (1990). [CrossRef]
  11. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995). [CrossRef] [PubMed]
  12. H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969). [CrossRef]
  13. M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993). [CrossRef]
  14. A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999). [CrossRef]
  15. A. Kaller, “Properties of polishing media for precision optics,” Glastech. Ber. 6, 174–183 (1998).
  16. N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995). [CrossRef]
  17. D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.
  18. S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).
  19. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999). [CrossRef]
  20. S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).
  21. We used Zygo Mark IVxp or Zygo GPI xpHR phase-shifting interferometer systems for all data acquisition and analysis related to polishing spots and a He–Ne laser source with λ = 632.8 nm (Zygo Corp., Middlefield, Conn. 06455).
  22. Zygo NewView white-light optical profiler, areal over 0.25 mm × 0.35 mm with a 20× Mirau objective, 1.1-µm lateral resolution (Zygo Corp., Middlefield Conn. 06455).
  23. W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).
  24. A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 3.
  25. Ref. 24, Chap. 2.
  26. A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999). [CrossRef]
  27. Q22 (QED Technologies, 1040 University Ave., Rochester, N.Y. 14607).
  28. Magnetic flux measurements were taken with the F. W. BellModel 9500 Gaussmeter (Bell Technologies Inc., Ontario, Fla. 32807).
  29. Computrac Max-1000 moisture analyzer (Arizona Instruments, Phoenix, Ariz.).
  30. Brookfield DV-III cone and plate viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).
  31. Nanoprobe III atomic force microscope (Digital Instruments, Santa Barbara, Calif.).
  32. We measured the pad with the I-scan pressure measurement system from Tekscan, Inc., Boston, Mass. We used a 0.1-mm-thick 5051 pressure film with a maximum allowable load of 345 kPa (50 psi) and a lateral resolution of 1.27 mm.
  33. Linear ball slide (Parker Hannafin Corp., Cleveland, Ohio).
  34. LKCP 475 5-lb load cell (Cooper Instruments, Warrenton, Va.).
  35. A. B. Shorey, K. M. Kwong, K. M. Johnson, S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt. 39, 5194–5204 (2000). [CrossRef]
  36. A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999). [CrossRef]
  37. Corning 7940 (Corning, Inc., Corning, N.Y.).
  38. R. S. Higgins, S. A. Klinger, eds., High Purity Solvent Guide (Baxter Diagnostics, Inc., Burdick and Jackson Division, Muskegon, Mich. 49443, 1990).
  39. Brookfield DV-II digital viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).
  40. Ref. 24, Chap. 5.
  41. NanoTek cerium oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).
  42. NanoTek (Gamma) aluminum oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).
  43. 0.125-µm Hyprez Type PC diamonds (Engis Corp., Wheeling, Ill.).
  44. NanoTek cerium oxide and aluminum oxide product literature (Nanophase Technologies Corp., Burr Ridge, Ill., 2000), www.nanophase.com/HTML/PRODUCTS .
  45. I. KozhinovaCenter for Optics Manufacturing, University of Rochester, 240 East River Road, Rochester, N.Y. 14623 (Personal communication, 1999).
  46. “Fundamentals of particle sizing,” (Nanophase Technologies Corp., Burr Ridge, Ill., 1994).
  47. Engis diamond product literature (Engis Corp., Wheeling, Ill., 2000), www.engis.com/powders_powders.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited