OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 62–70

Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes

Paul B. Mirkarimi, Sherry L. Baker, Claude Montcalm, and James A. Folta  »View Author Affiliations


Applied Optics, Vol. 40, Issue 1, pp. 62-70 (2001)
http://dx.doi.org/10.1364/AO.40.000062


View Full Text Article

Enhanced HTML    Acrobat PDF (120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO3 also showed promise.

© 2001 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(220.4610) Optical design and fabrication : Optical fabrication
(230.4170) Optical devices : Multilayers
(240.0240) Optics at surfaces : Optics at surfaces
(260.7200) Physical optics : Ultraviolet, extreme
(310.0310) Thin films : Thin films

History
Original Manuscript: April 20, 2000
Revised Manuscript: September 22, 2000
Published: January 1, 2001

Citation
Paul B. Mirkarimi, Sherry L. Baker, Claude Montcalm, and James A. Folta, "Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes," Appl. Opt. 40, 62-70 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-1-62


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stulen, D. W. Sweeney, “Extreme ultraviolet lithography,” IEEE J. Quantum Electron. 35, 694–699 (1999). [CrossRef]
  2. C. W. Gwyn, R. Stulen, D. Sweeney, D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998). [CrossRef]
  3. S. Hector, Advanced Products and Research Development Laboratory, Motorola, Inc., Austin, Texas 94550 (personal communication, 1999).
  4. J. S. Taylor, G. E. Sommargren, D. W. Sweeney, R. M. Hudyma, “The fabrication and testing of optics for EUV projection lithography,” in Emerging Lithographic Technologies II, Y. Vladirmirsky, ed., Proc. SPIE3331, 580–590 (1998). [CrossRef]
  5. J. A. Folta, S. Bajt, T. W. Barbee, R. F. Grabner, P. B. Mirkarimi, T. Nguyen, M. A. Schmidt, E. Spiller, C. C. Walton, M. Wedowski, C. Montcalm, “Advances in multilayer reflective coatings for extreme ultraviolet lithography,” in Emerging Lithographic Technologies III, Y. Vladirmirsky, ed., Proc. SPIE3676, 702–709 (1999). [CrossRef]
  6. C. Montcalm, S. Bajt, P. B. Mirkarimi, E. Spiller, F. J. Weber, J. A. Folta, “Multilayer reflective coatings for extreme ultraviolet lithography,” in Emerging Lithographic Technologies II, Y. Vladirmirsky, ed., Proc. SPIE3331, 42–51 (1998). [CrossRef]
  7. E. Spiller, D. Stearns, M. Krumrey, “Multilayer x-ray mirrors: interfacial roughness, scattering, and image quality,” J. Appl. Phys. 74, 107–118 (1993). [CrossRef]
  8. D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft-x-ray projection lithography,” Appl. Opt. 32, 6952–6960 (1993). [CrossRef] [PubMed]
  9. D. L. Windt, W. K. Waskiewicz, J. E. Griffith, “Surface finish requirements for soft-x-ray mirrors,” Appl. Opt. 33, 2025–2031 (1994). [CrossRef] [PubMed]
  10. D. G. Stearns, D. P. Gaines, D. W. Sweeney, E. M. Gullikson, “Nonspecular scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998). [CrossRef]
  11. E. M. Gullikson, “Scattering from normal incidence EUV optics,” in Emerging Lithographic Technologies III, Y. Vladirmirsky, ed., Proc. SPIE3676, 72–80 (1999).
  12. P. B. Mirkarimi, S. Bajt, M. Wall, “Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme ultraviolet lithography,” Appl. Opt. 39, 1617–1625 (2000). [CrossRef]
  13. H. Bach, Low Thermal Expansion Glass Ceramics (Springer-Verlag, Heidelberg, 1995). [CrossRef]
  14. S. T. Gulati, “Mechanical properties of SiO2 vs. SiO2-TiO2 bulk glasses and fibers,” in Optical Waveguide Materials, M. M. Broer, G. H. Siegel, R. T. Kersten, H. Kawazoe, eds. (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 244, pp. 67–84.
  15. D. P. Gaines, N. M. Ceglio, S. P. Vernon, M. Krumrey, P. Muller, “Repair of high performance multilayer coatings,” in Multilayer Optics for Advanced X-Ray Applications, N. M. Ceglio, ed., Proc. SPIE1547, 228–238 (1991). [CrossRef]
  16. K. Early, D. L. Windt, W. K. Waskiewicz, O. R. Wood, D. M. Tennant, “Repair of soft x-ray optical elements by stripping and redeposition of Mo/Si reflective coatings,” J. Vac. Sci. Technol. B 11, 2926–2929 (1993). [CrossRef]
  17. D. G. Stearns, S. L. Baker, “Substrate recovery of Mo–Si multilayer coated optics,” in Soft X-Ray Projection Lithography, A. H. Hawryluk, R. H. Stulen, eds., Vol. 18 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 176–181.
  18. S. P. Vernon, S. L. Baker, “Recovery of EUV lithography substrates,” in Extreme Ultraviolet Lithography, D. T. Atwood, F. Zernike, eds., Vol. 23 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 222–226.
  19. S. Bajt, R. D. Behymer, P. B. Mirkarimi, C. Montcalm, M. A. Wall, M. Wedowski, J. A. Folta, “Experimental investigation of beryllium-based multilayer coatings for extreme ultraviolet lithography,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldando, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 259–270 (1999). [CrossRef]
  20. P. B. Mirkarimi, “Stress, reflectance, and temporal stability of sputter-deposited Mo/Si and Mo/Be multilayer films for extreme ultraviolet lithography,” Opt. Eng. 38, 1246–1259 (1999). [CrossRef]
  21. D. G. Stearns, R. S. Rosen, S. P. Vernon, “Fabrication of high-reflectance Mo–Si multilayer mirrors by planar-magnetron sputtering,” J. Vac. Sci. Technol. A 9, 2662–2669 (1991). [CrossRef]
  22. J. H. Underwood, E. M. Gullikson, M. Koike, P. J. Batson, P. E. Denham, K. D. Franck, R. E. Tackaberry, W. F. Steele, “Calibration and standards beamline 6.3.2 at the advanced light source,” in Proceedings of the National Conference on Synchrotron Radiation Instrumentation, Rev. Sci. Instrum.67 (1996) (available on CD-ROM and at the following URL: http://www-cxro.lbl.gov/metrology/als6.3.2/pubs.html ).
  23. ES-1 Cr etch, Cyanek, Inc., 3058 Osgood Court, Fremont, Calif. 94538.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited