OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 1 — Jan. 1, 2001
  • pp: 85–94

Reflectance of Pigmented Polymer Coatings: Comparisons Between Measurements and Radiative Transfer Calculations

William E. Vargas and Gunnar A. Niklasson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 1, pp. 85-94 (2001)

View Full Text Article

Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Solar reflectance spectra of pigmented coatings have been obtained from spectroscopic measurements involving integrating sphere attachments. We demonstrate that measured and computed reflectances of an extended four-flux model [Appl. Opt. <b>37,</b> 2615 (1998)] whose average path-length parameters (APP’s) and forward-scattering ratios (FSR’s) are explicitly evaluated from a multiple-scattering approach at the front or back interface of the particulate coatings display fairly good agreement. The agreement of these properties in a standard four-flux model [Appl. Opt. <b>23,</b> 3353 (1984)], which neglects the spectral dependence of the APP and FSR, is found in the near infrared. Good agreement between these two four-flux approaches over the solar spectral range is obtained when the mean values of the APP’s and FSR’s are used in the standard model.

© 2001 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(110.7050) Imaging systems : Turbid media
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.2160) Physical optics : Energy transfer

William E. Vargas and Gunnar A. Niklasson, "Reflectance of Pigmented Polymer Coatings: Comparisons Between Measurements and Radiative Transfer Calculations," Appl. Opt. 40, 85-94 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, Chap. 10.
  2. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).
  3. N. P. Ryde and E. Matijevic, “Color effects of uniform colloidal particles of different morphologies packed into films,” Appl. Opt. 33, 7275–7281 (1994).
  4. D. C. Rich, “Computed-aided design and manufacturing of the color of decorative and protective coatings,” J. Coat. Technol. 67, 53–60 (1995).
  5. M. K. Gunde, J. K. Logar, Z. C. Orel, and B. Orel, “Application of the Kubelka–Munk theory to thickness-dependent diffuse reflectance of black paints in the mid-IR,” Appl. Spectrosc. 49, 623–629 (1995).
  6. M. K. Gunde, J. K. Logar, C. Orel, and B. Orel, “Optimum thickness determination to maximise the spectral selectivity of black pigmented coatings for solar collectors,” Thin Solid Films 277, 185–191 (1996).
  7. J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 1. Theory,” Appl. Opt. 12, 1811–1815 (1973).
  8. W. G. Egan, T. Hilgeman, and J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 2. Experiment,” Appl. Opt. 12, 1816–1823 (1973).
  9. E. P. Shettle and J. A. Weinman, “The transfer of solar irradiance through inhomogenous turbid atmospheres evaluated by Eddington’s approximation,” J. Atmos. Sci. 27, 1048–1055 (1970).
  10. J. H. Joseph and W. J. Wiscombe, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976).
  11. P. S. Mudgett, and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485–1502 (1971).
  12. R. W. Johnson, E. S. Thiele, and R. H. French, “Light-scattering efficiency of white pigments: an analysis of model core-shell pigments vs. optimized rutile TiO2,” TAPPI J. 80, 233–239 (1997).
  13. J. K. Beasley, J. T. Atkins, and F. W. Billmeyer, “Scattering and absorption of light in turbid media,” in Proceedings of the Second Interdisciplinary Conference on Electromagnetic Scattering, R. L. Rowell and R. S. Stein, eds. (Gordon & Breach, New York, 1967), pp. 765–784.
  14. B. Maheu, J. N. Letoulouzan, and G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984).
  15. T. M. J. Nilsson, and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Solar Energy Mater Solar Cells 37, 93–118 (1995).
  16. H. R. Wilson, J. Ferber, and W. Platzer, “Optical properties of thermotropic layers,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, Proc. SPIE 2255, 473–484 (1994).
  17. C. A. Arancibia and J. C. Ruiz-Suarez, “Spectral selectivity of cermets with large metallic inclusions,” J. Appl. Phys. 83, 5421–5426 (1998).
  18. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998).
  19. W. E. Vargas, “Two-flux radiative transfer model under nonisotropic propagating diffuse radiation,” Appl. Opt. 38, 1077–1085 (1999).
  20. W. E. Vargas and G. A. Niklasson, “Generalized method for evaluating scattering parameters used in radiative transfer models,” J. Opt. Soc. Am. A 14, 2243–2252 (1997).
  21. W. E. Vargas and G. A. Niklasson, “Intensity of diffuse radiation in particulate media,” J. Opt. Soc. Am. A 14, 2253–2262 (1997).
  22. W. Hartel, “Zur Theorie der Lichtstreuung durch trübe Schichten besonders Trübgläser,” Licht 10, 141–143, 165, 190, 191, 214, 215, 232–234 (1940).
  23. C. A. Arancibia-Bulnes and J. C. Ruiz-Suárez, “Average path-length parameter of diffuse light in scattering media,” Appl. Opt. 38, 1877–1883 (1999).
  24. W. E. Vargas, “Diffuse radiation intensity propagating through a particulate slab,” J. Opt. Soc. Am. A 16, 1362–1372 (1999).
  25. W. E. Vargas, P. Greenwood, J. E. Otterstedt, and G. A. Niklasson, “Light scattering in pigmented coatings: experiments and theory,” Solar Energy 68, 553–561 (2000).
  26. W. E. Vargas and G. A. Niklasson, “Pigment mass density and refractive index determination from optical measurements,” J. Phys. Condens. Matter 9, 1661–1670 (1997).
  27. W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka–Munk theory,” Appl. Opt. 36, 5580–5586 (1997).
  28. B. R. Palmer, P. Stamatakis, C. F. Bohren, and G. C. Salzman, “A multiple-scattering model for opacifying particles in polymer films,” J. Coatings Technol. 61, 41–47 (1989).
  29. E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method,” J. Am. Ceram. Soc. 81, 469–479 (1998).
  30. W. E. Vargas and G. A. Niklasson, “Forward average path-length parameter in four-flux radiative transfer models,” Appl. Opt. 36, 3735–3738 (1997).
  31. W. E. Vargas and G. A. Niklasson, “Forward-scattering ratios and average pathlength parameter in radiative transfer models,” J. Phys. Condens. Matter 9, 9083–9096 (1997).
  32. A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993).
  33. M. W. Ribarsky, “Titanium dioxide (TiO2) (rutile),” in Handbook of Optical Constants, E. D. Palik, ed. (Academic, New York, 1985), pp. 795–804.
  34. W. E. Vargas, “Light scattering and absorption in pigmented coatings,” Ph.D. dissertation (Uppsala University, Uppsala, Sweden, 1997).
  35. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994).
  36. A. R. Dagheidy, “Radiative transfer in a scattering medium with angle-dependent reflective boundaries,” Waves Random Media 7, 579–591 (1997).
  37. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882(1991).
  38. M. I. Mischenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652–4666 (1993).
  39. M. I. Mishchenio and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994).
  40. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
  41. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).
  42. D. J. Wielaard, M. I. Mishchenko, A. Macke, and B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation,” Appl. Opt. 36, 4605–4613 (1997).
  43. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).
  44. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
  45. D. W. Mackowski, “Electrostatic analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles,” Appl. Opt. 34, 3535–3545 (1995).
  46. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
  47. M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparisons of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683–694 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited