OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 10 — Apr. 1, 2001
  • pp: 1637–1648

Absolute Interferometric Testing Based on Reconstruction of Rotational Shear

Klaus R. Freischlad  »View Author Affiliations


Applied Optics, Vol. 40, Issue 10, pp. 1637-1648 (2001)
http://dx.doi.org/10.1364/AO.40.001637


View Full Text Article

Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method, believed to be new, for the absolute interferometric testing of flat or spherical surfaces is presented. It is based on the classic three-flat test, combined with additional measurements of one test piece in different rotational positions. Full-surface absolute maps for each test piece are determined with a data-processing technique based on the rotationally sheared maps of the rotated surface. An optimized numerical reconstruction algorithm employing linear filtering and superposition of the different rotational shear spectra in the angular frequency domain is used to reconstruct the rotationally sheared data. The technique does not require any assumptions about the surfaces under test; has low error propagation, even in the case of high spatial resolution; and is computationally efficient.

© 2001 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

Citation
Klaus R. Freischlad, "Absolute Interferometric Testing Based on Reconstruction of Rotational Shear," Appl. Opt. 40, 1637-1648 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-10-1637


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
  2. C. Huang, “Propagation errors in precision Fizeau interferometry,” Appl. Opt. 32, 7016–7021 (1993).
  3. C. J. Evans, “Compensation of errors introduced by nonzero fringe densities in phase-measuring interferometers,” Ann. CIRP 42, 577–580 (1993).
  4. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6, 1077–1084 (1967).
  5. G. Schulz, “Ein Interferenzverfahren zur absoluten Ebenheitsprüfung längs beliebiger Zentralschnitte,” Opt. Acta 14, 375–388 (1967).
  6. G. Schulz and J. Schwider, “Interferometric testing of smooth surfaces,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. XIII.
  7. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23, 379–383 (1984).
  8. J. Grzanna and G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77, 107–112 (1990).
  9. M. Küchel, “Method and apparatus for absolute interferometric testing of plane surfaces,” U.S. patent 5,106,194 (21 April 1992).
  10. G. Schulz and J. Grzanna, “Absolute flatness testing by the rotation method with optimal measuring-error compensation,” Appl. Opt. 31, 3767–3780 (1992).
  11. G. Schulz, “Absolute flatness testing by an extended rotation method using two angles of rotation,” Appl. Opt. 32, 1055–1059 (1993).
  12. C. Ai and J. C. Wyant, “Absolute testing of flats by using even and odd functions,” Appl. Opt. 32, 4698–4705 (1993).
  13. C. J. Evans and R. N. Kestner, “Test optics error removal,” Appl. Opt. 35, 1015–1021 (1996).
  14. C. Ai, J. Wyant, L.-Z. Shao, and R. E. Parks, “Method and apparatus for absolute measurement of entire surfaces of flats,” U.S. patent 5,502,566 (26 March 1996).
  15. C. J. Evans, R. J. Hocken, and W. T. Estler, “Self-calibration: reversal, redundancy, error separation, and ‘absolute testing, ’” Ann. CIRP 45/2, 791–806 (1996).
  16. M. Küchel, “Ein neues Verfahren zur Absolutprüfung von Planflächen,” Presented at the Annual Conference of the DGaO, Kloster Banz, Germany, 21–24 May 1997.
  17. R. Mercier, M. Lamare, P. Picart, and J. P. Marioge, “Two-flat method for bi-dimensional measurement of absolute departure from best sphere,” Pure Appl. Opt. 6, 117–126 (1997).
  18. R. P. Bourgeois, J. Magner, and H. P. Stahl, “Result of the calibration of interferometer transmission flats for the LIGO pathfinder optics,” in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE 3134, 86–94 (1997).
  19. R. E. Parks, L. Shao, and C. J. Evans, “Pixel-based absolute topography test of three flats,” Appl. Opt. 37, 5951–5956 (1998).
  20. A. E. Jensen, “Absolute calibration method for laser Twyman–Green wave-front testing interferometers,” J. Opt. Soc. Am. 63, 1313 (1973).
  21. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
  22. K.-E. Elssner, J. Grzanna, and G. Schulz, “Interferentielle Absolutprüfung von Sphärizitätsnormalen,” Opt. Acta 27, 563–580 (1980).
  23. K.-E. Elssner, R. Burow, J. Grzanna, and R. Spolaczyk, “Absolute sphericity measurement,” Appl. Opt. 28, 4649–4661 (1989).
  24. K. Freischlad, “Method and apparatus for absolutely measuring flat and spherical surfaces with high spatial resolution,” U.S. patent 6,184,994 (6 February 2001).
  25. K. R. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  27. K. R. Freischlad and C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986).
  28. D. J. Whitehouse, “Some theoretical aspects of error separation techniques in surface metrology,” J. Phys. E 9, 531–536 (1976).
  29. C. Elster and I. Weingärtner, “Exact wave-front reconstruction from two lateral shearing interferograms,” J. Opt. Soc. Am. A 16, 2281–2285 (1999).
  30. D. Achilles, Die Fourier-Transformation in der Signalverarbeitung (Springer-Verlag, Berlin, 1978).
  31. Suggested by one of the reviewers.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited