OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 10 — Apr. 1, 2001
  • pp: 1672–1681

Optical characterization method for black pigments applied to solar-selective absorbing paints

Tuquabo Tesfamichael, Anders Hoel, Gunnar A. Niklasson, Ewa Wäckelgård, Marta K. Gunde, and Zorica C. Orel  »View Author Affiliations


Applied Optics, Vol. 40, Issue 10, pp. 1672-1681 (2001)
http://dx.doi.org/10.1364/AO.40.001672


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel, to our knowledge, method for characterizing the optical properties of pigment particles or powders. Measurements of the diffuse and the total transmittance as well as the diffuse and the total reflectance are used to obtain effective scattering and absorption coefficients per unit length for the particles that are dispersed in a continuous matrix. For dilute dispersions in the single-scattering regime scattering and absorption cross sections of the particles were obtained. The method was applied to two pigments, namely, FeMnCuO x and black carbon. The data were obtained by use of pellets consisting of low concentrations of FeMnCuO x or black-carbon pigments dispersed in a KBr matrix. The pigment volume concentrations used to evaluate the scattering and the absorption coefficients ranged from 0.053% to 0.530% for FeMnCuO x and 0.076% to 0.310% for the black carbon. These ranges were found to exhibit the linear dependence of the coefficients as a function of volume fraction, as given by single-scattering theory.

© 2001 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(290.5850) Scattering : Scattering, particles
(300.6190) Spectroscopy : Spectrometers
(310.3840) Thin films : Materials and process characterization
(350.6050) Other areas of optics : Solar energy

History
Original Manuscript: December 4, 2000
Revised Manuscript: December 4, 2000
Published: April 1, 2001

Citation
Tuquabo Tesfamichael, Anders Hoel, Gunnar A. Niklasson, Ewa Wäckelgård, Marta K. Gunde, and Zorica C. Orel, "Optical characterization method for black pigments applied to solar-selective absorbing paints," Appl. Opt. 40, 1672-1681 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-10-1672


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Niklasson, C. G. Granqvist, O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981). [CrossRef] [PubMed]
  2. G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984). [CrossRef]
  3. G. Mie, “Optics of turbid media,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  4. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  5. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  6. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  7. G. A. Niklasson, “Comparison between four-flux theory and multiple scattering theory,” Appl. Opt. 23, 4034–4036 (1987). [CrossRef]
  8. A. Ishimaru, Wave Propagation and Scattering in Random Media (Institute of Electrical and Electronics Engineers, New York, 1997).
  9. G. W. Kattawar, G. N. Plass, “Asymptomatic radiance and polarization in optically thick media: ocean and clouds,” Appl. Opt. 15, 3166–3178 (1976). [CrossRef] [PubMed]
  10. G. W. Kattwar, G. N. Plass, J. A. Guinn, “Monte Carlo calculations of the polarization of radiation in the Earth’s atmosphere–ocean system,” J. Phys. Ocean 3, 353–372 (1973). [CrossRef]
  11. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. XXI, 1–22 (1905). [CrossRef]
  12. P. Kubelka, F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” A. Tech. Phys. 12, 593–601 (1931).
  13. B. Maheu, J. N. Letoulouzan, G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorentz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef]
  14. H. Reiss, Radiative Transfer in Nontransparent, Dispersed Media (Springer-Verlag, Heidelberg, Germany, 1988).
  15. C. C. Johnson, A. W. Guy, “Nonionizing electromagnetic wave effects in biological materials and systems,” Proc. IEEE 60, 692–718 (1972). [CrossRef]
  16. W. G. Egan, T. Hilgeman, J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 2. Experiment,” Appl. Opt. 12, 1816–1823 (1973). [CrossRef] [PubMed]
  17. P. S. Mudgett, L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485–1502 (1971). [CrossRef] [PubMed]
  18. D. G. Phillips, F. W. Billmeyer, “Predicting reflectance and color of paint films by Kubelka–Munk analysis,” J. Coat. Technol. 48, 30–36 (1976).
  19. Z. C. Orel, M. K. Gunde, B. Orel, “Application of the Kubelka–Munk theory for the determination of the optical properties of solar absorbing paints,” Prog. Org. Coat. 30, 59–66 (1997). [CrossRef]
  20. K. M. Gunde, Z. C. Orel, “Absorption and scattering of light by pigment particles in solar-absorbing paints,” Appl. Opt. 39, 622–628 (2000). [CrossRef]
  21. T. Tesfamichael, W. E. Vargas, E. Wäckelgård, G. A. Niklasson, “Optical properties of silicon pigmented alumina films,” J. Appl. Phys. 82, 3508–3513 (1997). [CrossRef]
  22. C. A. Arancibai-Bulnes, J. C. Ruiz-Suarez, “Spectral selectivity of cermets with large metallic inclusions,” J. Appl. Phys. 83, 5421–5426 (1998). [CrossRef]
  23. C. Sasse, “Development of an experimental system for optical characterization of large arbitrarily shaped particles,” Rev. Sci. Instrum. 64, 864–869 (1993). [CrossRef]
  24. C. Sasse, K. Muinonen, J. Piironen, G. Dröse, “Albedo measurements on single particles,” J. Quant. Spectrosc. Radiat. Transfer 55, 673–681 (1996). [CrossRef]
  25. C. M. Lampert, “Coatings for enhanced photothermal energy collection,” Solar Energy Mater. 2, 1–17 (1979). [CrossRef]
  26. O. P. Agnihotri, B. K. Gupta, Solar Selective Surfaces (Wiley-Interscience, New York, 1981).
  27. R. J. H. Lin, P. B. Zimmer, “Optimization of coatings for flat plate solar collectors,” (Honeywell, Inc., Minneapolis, Minn., 1977).
  28. Z. C. Orel, “Preparation of high temperature resistant selective paints for solar absorbers,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIV, C. M. Lampert, S. K. Deb, C. G. Granqvist, eds., Proc. SPIE2531, 296–307 (1995). [CrossRef]
  29. K. M. Gunde, Z. C. Orel, J. K. Logar, B. Orel, “Flocculation gradient technique in terms of Kubelka–Munk coefficients: quantifying black-pigmented dispersions,” Appl. Spectrosc. 49, 1756–1761 (1995). [CrossRef]
  30. K. M. Gunde, J. K. Logar, Z. C. Orel, B. Orel, “Optimum thickness determination to maximize the spectral selectivity of black pigmented coatings for solar collectors,” Thin Solid Films 277, 185–191 (1996). [CrossRef]
  31. W. E. Vargas, G. Niklasson, “Applicability conditions of the Kubelka–Munk theory,” Appl. Opt. 36, 5580–5586 (1997). [CrossRef] [PubMed]
  32. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  33. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D.C., 1981).
  34. W. Q. Hong, “Extraction of extinction coefficient of weak absorbing thin films from special absorption,” J. Phys. D. Appl. Phys. 22, 1384–1385 (1989). [CrossRef]
  35. B. C. Weast, Handbook of Chemistry and Physics (CRC Press, Cleveland, Oh., 1974), p. B-121.
  36. A. Roos, C. G. Ribbing, “Interpretation of integrating sphere signal output for non-Lambertian sample,” Appl. Opt. 27, 3833–3837 (1988). [CrossRef] [PubMed]
  37. A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993). [CrossRef]
  38. A. Roos, “Interpretation of integrating sphere signal output for nonideal transmitting samples,” Appl. Opt. 30, 468–474 (1991). [CrossRef] [PubMed]
  39. T. Tesfamichael, A. Hoel, G. A. Niklasson, E. Wäckelgård, M. K. Gunde, Z. C. Orel, “Optical characterization and modeling of black pigments used in thickness sensitive solar selective absorbing paints,” Solar Energy (to be published).
  40. I. Balberg, H. L. Pinch, “The optical absorption of iron oxide,” J. Magn. Magn. Mater. 7, 12–15 (1978). [CrossRef]
  41. F. Rouleau, P. G. Martin, “Shape and clustering effects on the optical properties of amorphous carbon,” Astrophys. J. 377, 526–540 (1991). [CrossRef]
  42. N. Savvides, B. Window, “Diamond-like amorphous carbon films prepared by magnetron sputtering of graphite,” J. Vac. Sci. Technol. A 3, 2386–2390 (1985). [CrossRef]
  43. V. K. Varadan, V. N. Bringi, V. V. Varadan, A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited