OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 10 — Apr. 1, 2001
  • pp: 1707–1714

Characterization of a multilayer highly reflecting mirror by spectroscopic phase-modulated ellipsometry

Dibyendu Bhattacharyya, Naba K. Sahoo, Sudhakar Thakur, and Nimai C. Das  »View Author Affiliations

Applied Optics, Vol. 40, Issue 10, pp. 1707-1714 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characterization of optical multilayer coatings has been a challenging task for thin-film scientists and engineers because of the various complex, interdependent layer parameters that exist in the system. Spectroscopic phase-modulated ellipsometry has some advantages in the postanalysis of the layer parameters of such multilayer coatings because it suitably models the layer structure with respect to the ellipsometric measurements. An algorithm to characterize multilayer optical coatings with large numbers of layers has been described by spectroscopic ellipsometry by use of a discrete spectral zone fitting approach. A 23-layer multilayer highly reflecting mirror has been characterized by this technique in the wavelength range 280–1000 nm. The ellipsometric spectra (Ψ and Δ versus wavelength) have been fitted separately in three wavelength regimes. Fitting the ellipsometric spectra in the wavelength regime of 700–1000 nm permitted the sample structure to be determined. The data were then fitted in the wavelength range 280–340 nm, i.e., near the fundamental absorption edge of TiO2, to yield the dispersion relation for the optical constants of TiO2. Finally, the data were fitted in the wavelength range 340–700 nm, and the true dispersion of the refractive index of TiO2, along with the best-fitting sample structure, was obtained.

© 2001 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.4670) Materials : Optical materials
(230.4170) Optical devices : Multilayers
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: April 4, 2000
Revised Manuscript: October 23, 2000
Published: April 1, 2001

Dibyendu Bhattacharyya, Naba K. Sahoo, Sudhakar Thakur, and Nimai C. Das, "Characterization of a multilayer highly reflecting mirror by spectroscopic phase-modulated ellipsometry," Appl. Opt. 40, 1707-1714 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Macleod, “Thin film optical coating design,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995), pp. 1–39.
  2. K. K. Pulker, G. Paesold, E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium oxygen phases,” Appl. Opt. 15, 2986–2991 (1976). [CrossRef] [PubMed]
  3. J. Back, W. S. Han, H. K. Cho, B. Lee, I. H. Choi, “Optically pumped continuous-wave operation of InAlGaAsInP based 155 µm vertical cavity surface emitting laser with SiO2/TiO2 di-electric mirror,” Electron. Lett. 35, 814–815 (1999). [CrossRef]
  4. V. Kozhukharov, Ch. Trapalios, B. Samuneva, E. Kilinova, “Sol-gel processing of multilayer thin coatings,” J. Mater. Sci. Lett. 11, 1206–1208 (1992). [CrossRef]
  5. Y. Taga, T. Itoh, “Improvement of abrasive resistance of SiO2/TiO2 multilayer interference filters,” Appl. Opt. 28, 2690–2691 (1989). [CrossRef] [PubMed]
  6. F. Mitschke, G. Ankerhold, W. Lange, “Hard coatings for optically bi-stable interference filters,” Appl. Phys. B 48, 101–104 (1989).
  7. I. Wakabayashi, K. Miyauchi, “Design of dielectric multilayer band-pass filters using arbitrary thickness of layers,” Electron. Commun. Jpn. Part 2 Electron. 80, 46–58 (1997). [CrossRef]
  8. P. M. Martin, D. C. Stewart, W. D. Bennett, J. D. Affinitto, M. E. Gross, “Multifunctional multilayer optical coatings,” J. Vac. Sci. Technol. A 15, 1098–1102 (1997). [CrossRef]
  9. H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, Y. Iimuna, “Titanium oxide/aluminum oxide multilayer reflectors for ‘water-window’ wavelengths,” Appl. Phys. Lett. 70, 2338–2340 (1997). [CrossRef]
  10. P. H. Smith, “A theoretical and experimental analysis of the ellipsometer,” Surf. Sci. 16, 34–66 (1969). [CrossRef]
  11. B. Drevellion, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982). [CrossRef]
  12. N. C. Das, D. Bhattacharyya, S. Thakur, “Characterisation of different single and multilayer films using phase modulated spectroscopic ellipsometry,” (Bhabha Atomic Research Centre, Mumbai, India, 1998).
  13. D. Bhattacharyya, N. K. Sahoo, S. Thakur, N. C. Das, “Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation,” Thin Solid Films 360, 96–102 (2000). [CrossRef]
  14. B. Drevellion, “Phase modulated ellipsometry from the ultra-violet to the infra-red: in-situ application to the growth of semiconductors,” Prog. Cryst. Growth Charact. 27, 1–87 (1993). [CrossRef]
  15. P. S. Hauge, F. H. Dill, “Design and operation of ETA, an automated ellipsometer,” IBM J. Res. Dev. 17, 472–489 (1973). [CrossRef]
  16. G. E. Jellison, “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314, 33–39 (1998).
  17. S. Russev, E. Valcheva, K. Germanova, “Investigation of the system InSb–SiO2 by spectroscopic multiangle ellipsometry,” Thin Solid Films 233, 231–235 (1993). [CrossRef]
  18. K. V. Popov, A. V. Tikhonravov, J. Campmany, E. Bertran, S. Bosch, A. Canillas, “Spectroscopic ellipsometric characterisation of transparent thin film amorphous electronic materials: integrated analysis,” Thin Solid Films313–314, 379–383 (1998).
  19. S. Callard, A. Gagnaire, J. Joseph, “Characterisation of graded refractive index silicon oxynitride thin films by spectroscopic ellipsometry,” Thin Solid Films, 313–314, 384–388 (1998).
  20. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carnigila, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989). [CrossRef] [PubMed]
  21. K. Balasubranium, X. F. Han, H. Guenther, “Comparative study of titanium dioxide thin films produced by electron-beam evaporation and by reactive low-voltage ion plating,” Appl. Opt. 32, 5594–5600 (1993). [CrossRef]
  22. P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994). [CrossRef]
  23. G. P. de Larivière, J. M. Frigerio, J. Rivory, F. Ables, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsiometry,” Appl. Opt. 31, 6056–6061 (1992). [CrossRef]
  24. H. R. Phillip, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), Chap. 5, pp. 749–763. [CrossRef]
  25. K. Sato, S. Adachi, “Optical properties of ZnTe,” J. Appl. Phys. 73, 926–931 (1993). [CrossRef]
  26. A. R. Forouhi, I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986). [CrossRef]
  27. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs and InSb,” Phys. Rev. B 35, 7454–7463 (1987). [CrossRef]
  28. M. Radecka, K. Zakrzewska, H. Czternastek, T. Stapinski, S. Debrus, “The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films,” Appl. Surf. Sci. 65–66, 227–234 (1993).
  29. N. Martin, C. Rousselot, C. Savall, F. Palmino, “Characterisations of titanium oxide films prepared by radio-frequency magnetron sputtering,” Thin Solid Films 287, 154–163 (1996). [CrossRef]
  30. J. D. DeLoach, G. Scarel, C. R. Aita, “Correlation between titania film structure and near ultra-violet optical absorption,” J. Appl. Phys. 85, 2377–2384 (1999). [CrossRef]
  31. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042–2047 (1994). [CrossRef]
  32. N. Daude, C. Gout, C. Jouanin, “Electronic band structure of titanium di-oxide,” Phys. Rev. B 15, 3229–3235 (1977). [CrossRef]
  33. P. Chindaudom, K. Vedam, Optical Characterisation ofInhomogeneous Transparent films on Transparent Substrates by Spectroscopic Ellipsometry, Vol. 19 of Physics of Thin Films, K. Vedam, ed. (Academic, San Diego, Calif., 1994), pp. 191–247.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited