OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 11 — Apr. 10, 2001
  • pp: 1767–1775

Noise-enhanced measurement of weak doublet spectra with a Fourier-transform spectrometer and a 1-bit analog-to-digital converter

May Lim and Caesar Saloma  »View Author Affiliations

Applied Optics, Vol. 40, Issue 11, pp. 1767-1775 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an efficient noise dithering procedure for measuring the power spectrum of a weak spectral doublet with a Fourier-transform spectrometer in which the subthreshold interferogram is measured by a 1-bit analog-to-digital converter without oversampling. In the absence of noise, no information is obtained regarding the doublet spectrum because the modulation term s(x) of its interferogram is below the instrumental detection limit B, i.e., |s(x)| < B, for all path difference x values. Extensive numerical experiments are carried out concerning the recovery of the doublet power spectrum that is represented by s(x) = (s0/2)exp(-π2x2/β)[cos(2πf1x) + cos(2πf2x)], where s0 is a constant, β is the linewidth factor, and 〈f〉 = (f1 + f2)/2. Different values of 〈f〉, s0, and β are considered to evaluate thoroughly the accuracy of the procedure to determine the unknown values of f1 and f2, the spectral linewidth, and the peak values of the spectral profiles. Our experiments show that, even for short observation times, the resonant frequencies of s(x) could be located with high accuracy over a wide range of 〈f〉 and β values. Signal-to-noise ratios as high as 50 are also gained for the recovered power spectra. The performance of the procedure is also analyzed with respect to another method that recovers the amplitude values of s(x) directly.

© 2001 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: August 10, 2000
Revised Manuscript: November 21, 2000
Published: April 10, 2001

May Lim and Caesar Saloma, "Noise-enhanced measurement of weak doublet spectra with a Fourier-transform spectrometer and a 1-bit analog-to-digital converter," Appl. Opt. 40, 1767-1775 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–288 (1998). [CrossRef]
  2. K. Wiesenfeld, F. Moss, “Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS,” Nature (London) 373, 33–36 (1995). [CrossRef]
  3. K. Wiesenfeld, F. Jaramillo, “Minireview of stochastic resonance,” Chaos 8, 539–548 (1998). [CrossRef]
  4. N. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  5. D. Russell, L. Wilken, F. Moss, “Use of behavioural stochastic resonance by paddle fish for feeding,” Nature (London) 402, 291–294 (1999). [CrossRef]
  6. F. Chapeau-Blondeau, X. Godivier, “Stochastic resonance in nonlinear transmission of spike signals: an exact model and an application to the neuron,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 2069–2076 (1996). [CrossRef]
  7. F. Vaudelle, J. Gazengel, G. Rivioire, X. Godivier, F. Chapeau-Blondeau, “Stochastic resonance and noise-enhanced transmission of spatial signals in optics: the case of scattering,” J. Opt. Soc. Am. B 15, 2674–2680 (1998). [CrossRef]
  8. A. Palonpon, J. Amistoso, J. Holdsworth, W. Garcia, C. Saloma, “Measurement of weak transmittances by stochastic resonance,” Opt. Lett. 23, 1480–1482 (1998). [CrossRef]
  9. P. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).
  10. A. Bulsara, L. Gammaitoni, “Tuning in to noise,” Phys. Today 49(3), 39–47 (1996). [CrossRef]
  11. M. Litong, C. Saloma, “Detection of sub-threshold oscillations by sinusoid-crossing sampling,” Phys. Rev. E 57, 3579–3588 (1998). [CrossRef]
  12. C. Saloma, P. Haeberli, “Optical spectrum analysis from zero crossings,” Opt. Lett. 16, 1535–1537 (1991). [CrossRef] [PubMed]
  13. C. Saloma, V. Daria, “Performance of a zero-crossing optical spectrum analyzer,” Opt. Lett. 18, 1468–1470 (1993). [CrossRef] [PubMed]
  14. V. Daria, C. Saloma, “Bandwidth and detection limit in crossing-based spectrum analyzer,” Rev. Sci. Instrum. 68, 240–242 (1997). [CrossRef]
  15. M. Lim, C. Saloma, “Direct signal recovery from threshold crossings,” Phys. Rev. E 58, 6759–6765 (1998). [CrossRef]
  16. V. Daria, C. Saloma, “High-accuracy Fourier transform interferometry, without oversampling, with a 1-bit analog-to-digital converter,” Appl. Opt. 39, 108–113 (2000). [CrossRef]
  17. C. Ho, C. Kuo, “Oversampling sigma-delta modulator stabilized by local nonlinear feedback loop technique,” IEEE Trans. Circuits Syst. II 47, 941–948 (2000). [CrossRef]
  18. M. Kozak, M. Karaman, I. Kale, “Efficient architectures for time-interleaved oversampling delta-sigma converters,” IEEE Trans. Circuits Syst. II 47, 802–809 (2000). [CrossRef]
  19. C. Zierhofer, “Adaptive sigma-delta modulation with one-bit quantization,” IEEE Trans. Circuits Syst. II 47, 408–415 (2000). [CrossRef]
  20. C. Dick, F. Harris, “FPGA signal processing using sigma-delta modulation,” IEEE Signal Process. Mag. 17, 20–35 (2000). [CrossRef]
  21. K. Minami, S. Kawata, “Dynamic range enhancement of Fourier transform infrared spectrum measurement using delta sigma modulation,” Appl. Opt. 32, 4822–4827 (1993). [CrossRef] [PubMed]
  22. S. Kurikov, D. Prilutskii, S. Selishchev, “Use of a sigma-delta analog-to-digital converter in multichannel electrocardiographs,” Biomed. Eng. (USSR) 31(4), 190–198 (1997). [CrossRef]
  23. F. Riedijk, G. Rademaker, J. Huijsing, “A dual-bit low-offset sigma delta analog-to-digital converter for integrated smart sensors,” Sens. Actuators A 36, 157–166 (1993). [CrossRef]
  24. S. Freeman, M. Quick, M. Morin, R. Anderson, C. Desilets, T. Linnenbrink, M. O’Donnell, “Delta-sigma oversampled ultrasound beamformer with dynamic delays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 320–332 (1999). [CrossRef]
  25. S. Gal, G. Cathebras, Y. Bertrand, “Measurement of small resistance variations using sigma delta technique,” Electron. Lett. 34, 1578–1579 (1998). [CrossRef]
  26. O. Norman, “A band-pass delta-sigma modulator for ultrasound imaging at 160 MHz clock rate,” IEEE J. Solid-State Circuits 31, 2036–2041 (1996). [CrossRef]
  27. H. Verhoeven, J. Huijsing, “Design of integrated thermal flow sensors using thermal sigma-delta modulation,” Sens. Actuators A 52, 198–202 (1996). [CrossRef]
  28. F. Riedijk, J. Huijsing, “A smart balanced thermal pyranometer using a sigma-delta A-to-D converter for direct communication with microcontrollers,” Sens. Actuators A 37/38, 16–25 (1993). [CrossRef]
  29. F. Huck, C. Fales, N. Haylo, R. Samms, K. Stacey, “Image gathering and processing: information and fidelity,” J. Opt. Soc. Am. A 2, 1644–1666 (1985). [CrossRef] [PubMed]
  30. M. Nazario, C. Saloma, “Signal recovery in sinusoid crossing sampling using the minimum negativity constraint,” Appl. Opt. 37, 2953–2963 (1998). [CrossRef]
  31. J. Proakis, D. Manolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1989).
  32. H. Cramer, M. Leadbetter, Stationary and Related Stochastic Processes (Wiley, New York, 1967).
  33. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited