OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 11 — Apr. 10, 2001
  • pp: 1814–1818

Speckle velocimetry by means of holographic time-integrative correlation

J. Khoury, Peter D. Gianino, and Charles L. Woods  »View Author Affiliations


Applied Optics, Vol. 40, Issue 11, pp. 1814-1818 (2001)
http://dx.doi.org/10.1364/AO.40.001814


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop the theory of the speckle velocimeter that is based on use of a photorefractive real-time hologram in four-wave mixing as a time-integrative correlator. The theory of the speckle velocimeter has been developed for the time correlation between the far-field spectrum of light scattered from the diffuser and the reference wave that is Doppler shifted. Our theoretical derivation shows that it is possible to extract the velocity with minor processing of the output correlation.

© 2001 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.4550) Fourier optics and signal processing : Correlators
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(190.5330) Nonlinear optics : Photorefractive optics

History
Original Manuscript: April 26, 2000
Revised Manuscript: October 12, 2000
Published: April 10, 2001

Citation
J. Khoury, Peter D. Gianino, and Charles L. Woods, "Speckle velocimetry by means of holographic time-integrative correlation," Appl. Opt. 40, 1814-1818 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-11-1814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Erf, ed., Speckle Metrology (Academic, New York, 1978).
  2. P. G. Simkins, T. D. Dudderar, “Laser speckle measurements of transient Benard convection,” J. Fluid Mech. 89, 665–671 (1978). [CrossRef]
  3. S. H. Collicott, L. Hesselink, “Anamorphic optical processing of multiple-exposure speckle photographs,” Opt. Lett. 11, 410–412 (1986). [CrossRef] [PubMed]
  4. R. Meynart, “Instantaneous velocity field measurements in unsteady gas flow by speckle velocimetry,” Appl. Opt. 22, 535–540 (1983). [CrossRef] [PubMed]
  5. R. Barakat, “Zero-crossing rate differential speckle intensity,” J. Opt. Soc. Am. A 11, 671–673 (1994). [CrossRef]
  6. S. E. Moran, R. L. Law, P. N. Craig, W. M. Goldberg, “Optically phase-locked electronic pattern interferometer,” Appl. Opt. 26, 475–491 (1987). [CrossRef] [PubMed]
  7. S. E. Moran, R. Lugannani, P. N. Craig, R. L. Law, “Optically phase-locked electronic speckle pattern interferometer system performance for vibration measurement in random displacement fields,” J. Opt. Soc. Am. A 6, 252–269 (1989). [CrossRef]
  8. B. E. A. Saleh, “Speckle correlation measurement of the velocity of a small rotating rough object,” Appl. Opt. 14, 2344–2346 (1975). [CrossRef] [PubMed]
  9. S. H. Collicott, L. Hesselink, “Real-time photorefractive recording and optical processing for speckle velocimetry,” Opt. Lett. 13, 348–350 (1988). [CrossRef] [PubMed]
  10. K. Nakagawa, T. Minemoto, “Readout properties of the specklegram recorded in photorefractive Bi12SiO20 crystal,” Appl. Opt. 30, 2386–2392 (1991). [CrossRef] [PubMed]
  11. H. J. Tiziani, K. Leonhard, J. Klenk, “Real-time displacement and tilt analysis by a speckle technique using Bi12SiO20 crystal,” Opt. Commun. 34, 327–331 (1980). [CrossRef]
  12. L. Hesselink, Handbook of Flow Visualization (Hemisphere, New York, 1988).
  13. J. Khoury, V. Ryan, C. L. Woods, M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991). [CrossRef] [PubMed]
  14. J. Khoury, V. Ryan, M. Cronin-Golomb, C. L. Woods, “Photorefractive frequency converter and phase-sensitive detector,” J. Opt. Soc. Am. B 10, 72–82 (1993). [CrossRef]
  15. J. Khoury, V. Ryan, C. L. Woods, M. Cronin-Golomb, “Photorefractive time correlation motion detection,” Opt. Commun. 85, 5–9 (1991). [CrossRef]
  16. T. C. Hale, K. L. Telshow, V. A. Deason, “Photorefractive optical lock-in vibration measurement,” Appl. Opt. 36, 8248–8285 (1997). [CrossRef]
  17. B. L. Volodin, Sandalphon, S. K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995). [CrossRef]
  18. B. Cairns, E. Wolf, “Changes in the spectrum of light scattered by a moving diffuser plate,” J. Opt. Soc. Am. A 8, 1922–1928 (1991). [CrossRef]
  19. N. Takai, Sutanto, T. Asakura, “Dynamic statistical properties of laser speckle due to longitudinal motion of a diffuse object under Gaussian beam illumination,” J. Opt. Soc. Am. 70, 827–834 (1980). [CrossRef]
  20. L. E. Estes, L. M. Narducci, R. A. Tuft, “Scattering of light from a rotating ground glass,” J. Opt. Soc. Am. 61, 1301–1306 (1971). [CrossRef]
  21. J. H. Churnside, “Speckle from a rotating diffuse object,” J. Opt. Soc. Am. 72, 1464–1469 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited