OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 11 — Apr. 10, 2001
  • pp: 1832–1842

Blockwise data detection for spectral hole-burning memories

Lilin Zhang and Mark A. Neifeld  »View Author Affiliations

Applied Optics, Vol. 40, Issue 11, pp. 1832-1842 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the retrieval of data from a time-domain spectral hole-burning (SHB) memory system. A new iterative log-likelihood (ILL) algorithm is used to reliably detect corrupted retrieved data signals. It is a blockwise technique that takes advantage of the known SHB system characteristics to mitigate time-varying intersymbol interference and detector shot noise. We present bit-error-rate results obtained with the ILL algorithm and five other typical methods (i.e., precompensator, simple threshold, adaptive threshold, a simple Wiener filter, and an adaptive Wiener filter). Results show that the ILL algorithm outperforms all five techniques and hence offers improved SHB storage capacity. In a SHB system with typical material parameters, we find that ILL offers a storage capacity gain of 197% as compared with simple thresholding.

© 2001 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(210.4680) Optical data storage : Optical memories

Original Manuscript: June 7, 2000
Revised Manuscript: December 5, 2000
Published: April 10, 2001

Lilin Zhang and Mark A. Neifeld, "Blockwise data detection for spectral hole-burning memories," Appl. Opt. 40, 1832-1842 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Guenette, D. J. Parker, “CD, CD-ROM, CD-R, CD-RW, DVD, DVD-R, DVD-RAM: the family album,” EMedia Professional 10, 30–34 (1997).
  2. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  3. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Gunther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997). [CrossRef]
  4. J. H. Zhai, Y. Ruan, Z. G. Li, “Holographic technique for improving the performances of frequency-domain optical storage,” Opt. Commun. 118, 499–504 (1995). [CrossRef]
  5. N. Murase, K. Horie, M. Terao, M. Ojima, “Theoretical study of the recording density limit of photochemical hole-burning memory,” J. Opt. Soc. Am. B 9, 998–1005 (1992). [CrossRef]
  6. W. E. Moerner, Persistent Hole Burning: Science and Application (Springer, Berlin, 1998).
  7. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982). [CrossRef] [PubMed]
  8. W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical recording,” Opt. Commun. 58, 249–254 (1986). [CrossRef]
  9. W. R. Babbitt, T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–187 (1988). [CrossRef]
  10. S. B. Altner, S. Bernet, A. Renn, E. S. Maniloff, F. R. Graf, U. P. Wild, “Spectral holeburning and holography VI: photon echoes from cw spectrally programmed holograms in a Pr3+:Y2SiO5 crystal,” Opt. Commun. 120, 103–111 (1995). [CrossRef]
  11. W. R. Babbitt, Y. S. Bai, T. W. Mossberg, “Convolution, correlation, and storage of optical data in inhomogeneously broadened absorbing materials,” in Optical Information Processing II, D. R. Pape, ed., Proc. SPIE639, 240–247 (1988). [CrossRef]
  12. K. D. Merkel, W. R. Babbitt, “Compensation for homogeneous dephasing in coherent transient optical memories and processors,” Opt. Commun. 128, 136–144 (1996). [CrossRef]
  13. J. Y. Choi, J. F. Walkup, T. F. Krile, D. J. Mehrl, “Bit error rates for a photon echo memory,” in Advanced Optical Memories and Interfaces to Computer Storage, P. A. Mitkas, Z. U. Hasan, eds., Proc. SPIE3468, 248–257 (1998). [CrossRef]
  14. J. Hagenauer, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42, 429–445 (1996). [CrossRef]
  15. X. Chen, K. M. Chugg, M. A. Neifeld, “Near-optimal parallel distributed data detection for page-oriented optical memories,” IEEE J. Sel. Top. Quantum Electron. 4, 866–879 (1998). [CrossRef]
  16. C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: turbo-codes (1),” in IEEE International Conference on Communications Proceedings, (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1064–1070.
  17. C. Berrou, A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun. 44, 1261–1271 (1996). [CrossRef]
  18. S. Benedetto, G. Montorsi, “Unveiling turbo codes: some results on parallel concatenated coding schemes,” IEEE Trans. Inf. Theory 42, 409–428 (1996). [CrossRef]
  19. S. Benedetto, D. Divsalar, G. Montorsi, F. J. Pollara, “Soft-output decoding algorithms for continuous decoding of parallel concatenated convolutional codes,” in 1995 IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 112–117.
  20. S.-S. Jiang, A. A. Sawchuk, “Noise updating repeated Wiener filter and other adaptive noise smoothing filters using local image statistics,” Appl. Opt. 25, 2326–2336 (1986). [CrossRef] [PubMed]
  21. B. M. King, M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998). [CrossRef]
  22. K. M. Chugg, X. Chen, M. A. Neifeld, “Two-dimensional equalization in coherent and incoherent page-oriented optical memory,” J. Opt. Soc. Am. A 16, 549–562 (1999). [CrossRef]
  23. M. A. Neifeld, L. Zhang, “Limits on the bitwise information density of spectral storage,” Opt. Commun. 177, 171–179 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited