OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 11 — Apr. 10, 2001
  • pp: 1843–1855

Scalability Analysis of Diffractive Optical Element-Based Free-Space Photonic Circuits for Interoptoelectronic Chip Interconnections

Hironori Sasaki, Kyoko Kotani, Hiroshi Wada, Takeshi Takamori, and Takashi Ushikubo  »View Author Affiliations


Applied Optics, Vol. 40, Issue 11, pp. 1843-1855 (2001)
http://dx.doi.org/10.1364/AO.40.001843


View Full Text Article

Acrobat PDF (577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An interchip free-space optical interconnection module is investigated to solve the pin-input–output bottleneck at the interface of silicon integrated circuits. The scalability of the photonic circuit is theoretically analyzed by use of the minimum feature size requirement of each diffractive element used. The study showed that interconnection densities of 1000–2000 channels/cm is possible for a 40-mm interconnection length with a 3-mm-thick optical substrate. Diffraction-limited imaging capability has been demonstrated using a fabricated prototype, confirming its applicability for interchip free-space interconnections. Photonic circuit insertion losses of −23.4 dB for TE polarization and −25.9 dB for TM polarization as well as a polarization-dependent loss of 2.5 dB are found to be caused primarily by a pair of binary linear gratings used for beam deflections. Design modifications aiming at insertion loss reduction and further improvement of tolerance capabilities are also discussed.

© 2001 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(130.0130) Integrated optics : Integrated optics
(130.0250) Integrated optics : Optoelectronics
(200.4650) Optics in computing : Optical interconnects
(220.4830) Optical design and fabrication : Systems design
(250.5300) Optoelectronics : Photonic integrated circuits

Citation
Hironori Sasaki, Kyoko Kotani, Hiroshi Wada, Takeshi Takamori, and Takashi Ushikubo, "Scalability Analysis of Diffractive Optical Element-Based Free-Space Photonic Circuits for Interoptoelectronic Chip Interconnections," Appl. Opt. 40, 1843-1855 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-11-1843


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 181 Metro Drive, Suite 450, San Jose, Calif. 95110 (1997), http://www.semichips.org/index.htm.
  2. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, and S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
  3. A. V. Krishnamoorthy and A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
  4. M. R. Feldman and C. C. Guest, “Interconnect density capabilities of computer generated holograms for optical interconnection of very large scale integrated circuits,” Appl. Opt. 28, 3134–3137 (1989).
  5. J. Jahns and B. Acklin, “Integrated planar optical imaging system with high interconnection density,” Opt. Lett. 18, 1594–1596 (1993).
  6. R. K. Kostuk, J.-H. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
  7. J. Jahns, F. Sauer, B. Tell, K. F. B.-Goebeler, A. Y. Feldblum, C. R. Nijander, and W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
  8. T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994).
  9. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, and H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
  10. K. S. Urquhart, P. Marchand, Y. Fainman, and S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
  11. L. J. Camp, R. Sharma, and M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison,” Appl. Opt. 33, 6168–6180(1994).
  12. R. T. Chen, F. Li, M. Dubinovsky, and O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
  13. Y. Liu, B. Robertson, D. V. Plant, H. S. Hinton, and W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
  14. Y. Liu, B. Robertson, G. C. Boisset, M. H. Ayliffe, R. Iyer, and D. V. Plant, “Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator,” Appl. Opt. 37, 2895–2914 (1998).
  15. K. Hirabayashi, T. Yamamoto, S. Matsuo, and S. Hino, “Board-to-board free-space optical interconnections passing through boards for a bookshelf-assembled terabit-per-second-class ATM switch,” Appl. Opt. 37, 2985–2995 (1998).
  16. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
  17. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, and Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
  18. F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, and W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
  19. S. K. Patra, J. Ma, V. H. Ozguz, and S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
  20. Y. Li, R. A. Linke, Y.-D. Lyuu, S. Kawai, K. Kubota, and K. Kasahara, “Planar-optical mesh-connected tree interconnects: a feasibility study,” Appl. Opt. 34, 1801–1814 (1995).
  21. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
  22. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
  23. H. Wada, H. Sasaki, and T. Kamijoh, “Wafer bonding technology for optoelectronic integrated devices,” Solid-State Electron. 43, 1655–1663 (1999).
  24. H. Sasaki, I. Fukkuzaki, Y. Katsuki, and T. Kamijoh, “Design considerations of stacked multilayers of diffractive optical elements for optical network units in optical subscriber-network applications,” Appl. Opt. 37, 3735–3745 (1998).
  25. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief grating,” J. Opt. Soc. Am. 72, 1383–1392 (1982).
  26. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
  27. D. I. Babi’c and J. J. Dudley, “Double-fused 1.52-μm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
  28. D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, and K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
  29. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
  30. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51, 17–20 (1961).
  31. L. d’Auria, J. P. Huignard, A. M. Roy, and E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
  32. G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  33. Y. Li and E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982).
  34. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
  35. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
  36. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  37. A. Yariv, “The propagation of rays and beams,” in Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985).
  38. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806–809 (1978).
  39. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” MIT Tech. Rep. 854 (Massachusetts Institute of Technology, Cambridge, Mass., 1989).
  40. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Tech. Rep. 914 (Massachusetts Institute of Technology, Cambridge, Mass., 1991).
  41. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
  42. G. P. Agrawal, Fiber-Optics Communication Systems (Wiley, New York, 1992), Chap. 4.
  43. W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
  44. D. Zaleta, S. Patra, V. Ozguz, J. Ma, and S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
  45. code v is a registered trademark of Optical Research Associates, 3280 East Foothill Blvd., Pasadena, Calif. 91107.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited