OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1897–1906

Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects

Zhouling Wu, Christopher J. Stolz, Shannon C. Weakley, James D. Hughes, and Qiang Zhao  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 1897-1906 (2001)
http://dx.doi.org/10.1364/AO.40.001897


View Full Text Article

Acrobat PDF (4883 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A variety of microscopic techniques were employed to characterize fluence-limiting defects in hafnia–silica multilayer coatings manufactured for the National Ignition Facility, a fusion laser with a wavelength of 1.053 μm and a pulse width of 3 ns. Photothermal microscopy, with the surface thermal lens effect, was used to map the absorption and thermal characteristics of 3 mm × 3 mm areas of the coatings. High-resolution subaperture scans, with a 1-μm step size and a 3-μm pump-beam diameter, were conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy were used to identify defects and characterize their topography. The defects were then irradiated by a damage testing laser (1.06 μm and 3 ns) in single-shot mode until damage occurred. The results were analyzed to determine the role of nodular and nonnodular defects in limiting the damage thresholds of the multilayer coatings. It was found that, although different types of defect were present in these coatings, the fluence-limiting ones had the highest photothermal signals (up to 126× over the host coating). The implication of this study is that coating process improvements for hafnia–silica multilayer coatings should have a broader focus than just elimination of source ejection, since high photothermal signals frequently occur at nodule-free regions. The study also demonstrates that, for optics subject to absorption-induced thermal damage, photothermal microscopy is an appropriate tool for nondestructive identification of fluence-limiting defects.

© 2001 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(350.5340) Other areas of optics : Photothermal effects

Citation
Zhouling Wu, Christopher J. Stolz, Shannon C. Weakley, James D. Hughes, and Qiang Zhao, "Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects," Appl. Opt. 40, 1897-1906 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-1897


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, and J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
  2. B. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. Barker, I. Smith, D. Browning, and W. Behrendt, “Performance of a prototype, large-aperture multipass Nd:glass laser for inertial confinement fusion,” Appl. Opt. 36, 4932–4953 (1997).
  3. M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2114, 640–648 (1994).
  4. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, and J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 144–152 (1999).
  5. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
  6. C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra and H. A. Macleod, eds., Proc. SPIE 3738, 318–324 (1999).
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 137–143 (1999).
  8. C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, and R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 475–483 (1999).
  9. J. Dijon, G. Ravel, and B. Andre, “Thermomechanical model of mirror laser damage at 1.06 μm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 398–407 (1999).
  10. M. Reichling, A. Bodemann, and N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
  11. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
  12. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
  13. W. C. Mundy, R. S. Hughes, and C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).
  14. J. Abate, A. Schmid, M. Guardalben, D. J. Smith, and S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).
  15. A. F. Stewart, A. Rusek, and A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).
  16. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
  17. E. Welsch, K. Ettrich, M. Peters, W. Ziegler, and H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).
  18. E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, and M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE 2253, 993–1004 (1994).
  19. E. Welsch, K. Ettrich, D. Ristau, and U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
  20. A. Bodemann, M. Reichling, N. Kaiser, and E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
  21. A. Bodemann, N. Kaiser, M. Reichling, and E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).
  22. S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, and T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
  23. K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
  24. M. Commandré, P. Roche, J. P. Borgogno, and G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE 2253, 982–992 (1994).
  25. M. Commandré and P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
  26. Z. L. Wu and K. Bange, “Comparative photothermal study of reactive low-voltage ion-plated and electron-beam-evaporated TiO2 thin films,” Appl. Opt. 33, 7901–7907 (1994).
  27. Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, and M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
  28. P. K. Kuo and M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
  29. H. Saito, M. Irikura, M. Haraguchi, and M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2053 (1992).
  30. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, and R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
  31. R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, and T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 376–385 (1998).
  32. C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE. 2966, 265–272 (1997).
  33. C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, and E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56o incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 550–558 (1996).
  34. Z. L. Wu, M. Reichling, Z. X. Fan, and Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1441, 200–213 (1991).
  35. R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
  36. M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE 2253, 743–750 (1994).
  37. M. Poulingue, H. Leplan, J. Dijon, B. Rafin, and M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra and H. A. Macleod, eds., Proc. SPIE 3738, 325–336 (1999).
  38. M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1624, 375–385 (1992).
  39. A. Fornier, C. Cordillot, D. Ausserre, and F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2114, 355–365 (1994).
  40. L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, and C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 304–313 (1999).
  41. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, and S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
  42. M. L. Grilli, D. Ristau, M. Dieckmann, and U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).
  43. F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 273–282 (1997).
  44. J. H. Apfel, “Optical coating design with reduced electric field intensity,” Appl. Opt. 16, 1880–1885 (1977).
  45. A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, and M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 801, 47–57 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited