OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 1925–1930

Asymmetry of the forward and backward Raman gain coefficient at 1.54 µm in methane

Young Soo Choi  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 1925-1930 (2001)
http://dx.doi.org/10.1364/AO.40.001925


View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The threshold pump energies at 1.06 µm and Raman gain coefficients of stimulated Raman scattering (SRS) at 1.54 µm have been measured in both single-pass and half-resonator configurations at various methane pressures. In the single-pass configuration, the Raman gain coefficients of the backward and forward SRS are 0.32 and 0.23 cm/GW at 95 atm, respectively. The backward Raman gain coefficient is higher than the forward Raman gain coefficient. This gain reduction is caused by the depletion of local pump intensity, the phase-matching conditions, and the transient effect of the high amplification rate in the forward SRS process. In the half-resonator configuration, the Raman gain coefficient was 0.46 cm/GW at 75 atm of methane.

© 2001 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3550) Lasers and laser optics : Lasers, Raman

History
Original Manuscript: November 18, 1999
Revised Manuscript: June 22, 2000
Published: April 20, 2001

Citation
Young Soo Choi, "Asymmetry of the forward and backward Raman gain coefficient at 1.54 µm in methane," Appl. Opt. 40, 1925-1930 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-1925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965). [CrossRef]
  2. J. C. White, “Tunable lasers,” in Vol. 59 of Topics in Applied Physics, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, Berlin, 1987), Chap. 4.
  3. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967). [CrossRef]
  4. G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977). [CrossRef]
  5. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979). [CrossRef]
  6. J. O. White, “High efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990). [CrossRef]
  7. K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993). [CrossRef] [PubMed]
  8. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963). [CrossRef]
  9. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965). [CrossRef]
  10. W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979). [CrossRef]
  11. K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992). [CrossRef]
  12. Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1990). [CrossRef]
  13. K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993). [CrossRef]
  14. H. J. Kong, Y. G. Jeon, J. K. Kim, “Efficient Raman conversion through backward stimulated Brillouin scattering,” Appl. Opt. 34, 993–995 (1995). [CrossRef] [PubMed]
  15. D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986). [CrossRef]
  16. R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995). [CrossRef]
  17. J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988). [CrossRef]
  18. R. B. Lopert, “Measured stimulated Raman gain in methane,” Ph.D. dissertation (University of California, Davis, Davis, California 95616, 1983).
  19. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993). [CrossRef]
  20. D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986). [CrossRef]
  21. C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988). [CrossRef]
  22. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989). [CrossRef]
  23. A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994). [CrossRef]
  24. Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990). [CrossRef]
  25. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental investigation of high power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5042 (1997). [CrossRef] [PubMed]
  26. L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997). [CrossRef]
  27. N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987). [CrossRef]
  28. M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969). [CrossRef]
  29. D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975). [CrossRef]
  30. G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).
  31. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992). [CrossRef]
  32. R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited