Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer

Not Accessible

Your library or personal account may give you access

Abstract

Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78°, 9.68°, 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Direct-Sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers

Wei Gao, James Slusser, James Gibson, Gwendolyn Scott, David Bigelow, James Kerr, and Bruce McArthur
Appl. Opt. 40(19) 3149-3155 (2001)

Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers

James Slusser, James Gibson, David Bigelow, Donald Kolinski, Wanfeng Mou, Gloria Koenig, and Arthur Beaubien
Appl. Opt. 38(9) 1543-1551 (1999)

Analysis of direct solar ultraviolet irradiance measurements in the French Alps. Retrieval of turbidity and ozone column amount

Jacqueline Lenoble, Alain de la Casinière, and Thierry Cabot
Appl. Opt. 43(15) 3133-3139 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved