OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 2024–2030

High-Resolution Fourier-Transform Ultraviolet-Visible Spectrometer for the Measurement of Atmospheric Trace Species: Application to OH

Richard P. Cageao, Jean-Francois Blavier, James P. McGuire, Yibo Jiang, Vassilii Nemtchinov, Frank P. Mills, and Stanley P. Sander  »View Author Affiliations


Applied Optics, Vol. 40, Issue 12, pp. 2024-2030 (2001)
http://dx.doi.org/10.1364/AO.40.002024


View Full Text Article

Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, high-resolution Fourier-transform spectrometer for atmospheric near-ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory’s Table Mountain Facility (34.4 °N, 117.7 °W, elevation 2290 m). This instrument is designed with an unapodized resolving power near 500,000 at 300 nm to provide high-resolution spectra from 290 to 675 nm for the quantification of column abundances of trace atmospheric species. The measurement technique used is spectral analysis of molecular absorptions of solar radiation. The instrument, accompanying systems designs, and results of the atmospheric hydroxyl column observations are described.

© 2001 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Richard P. Cageao, Jean-Francois Blavier, James P. McGuire, Yibo Jiang, Vassilii Nemtchinov, Frank P. Mills, and Stanley P. Sander, "High-Resolution Fourier-Transform Ultraviolet-Visible Spectrometer for the Measurement of Atmospheric Trace Species: Application to OH," Appl. Opt. 40, 2024-2030 (2001)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-12-2024


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson, “Aircraft-borne, laser-induced fluorescence instrument for the in-situ detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
  2. R. M. Stimpfle, P. O. Wennberg, L. B. Lapson, and J. G. Anderson, “Simultaneous, in situ measurements of OH and HO2 in the stratosphere,” Geophys. Res. Lett. 17, 1905–1908 (1990).
  3. H. M. Pickett and D. B. Peterson, “Stratospheric OH measurements with a far-infrared limb sounding spectrometer,” J. Geophys. Res. 98, 20507–20515 (1993).
  4. H. M. Pickett and D. B. Peterson, “Comparison of measured stratospheric OH with prediction,” J. Geophys. Res. 101, 16789–16796 (1996).
  5. W. A. Traub, K. V. Chance, D. G. Johnson, and K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2),” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy and R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).
  6. D. G. Johnson, K. W. Jucks, W. A. Traub, and K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
  7. R. R. Conway, D. K. Prinz, and G. H. Mount, “Middle atmosphere high resolution spectrograph,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. SPIE 932, 50–60 (1988).
  8. R. R. Conway, M. H. Stevens, J. G. Cardon, S. E. Zasadil, C. M. Brown, J. S. Morrill, and G. H. Mount, “Satellite measurements of hydroxyl in the mesosphere,” Geophys. Res. Lett. 23, 2093–2096 (1996).
  9. M. F. Morgan, D. G. Torr, and M. R. Torr, “Preliminary measurements of mesospheric OH X2Π by ISO on ATLAS I,” Geophys. Res. Lett. 20, 511–514 (1993).
  10. C. R. Burnett and E. B. Burnett, “OH PEPSIOS,” Appl. Opt. 22, 2887–2892 (1983).
  11. C. R. Burnett and E. B. Burnett, “Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth’s stratosphere,” J. Geophys. Res. 86, 5185–5202 (1981).
  12. C. R. Burnett and K. Minschwaner, “Continuing development in the regime of decreased atmospheric column OH at Fritz peak,” Geophys. Res. Lett. 25, 1313–1316 (1998).
  13. N. Iwagami, S. Inomata, I. Murata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere,” J. Atmos. Chem. 20, 1–15 (1995).
  14. N. Iwagami, S. Inomata, and T. Ogawa, “Doppler detection of hydroxyl column abundance in the middle atmosphere: 2. Measurement for three years and comparison with a 1D model,” J. Atmos. Chem. 29, 195–216 (1998).
  15. J. Notholt, H. Schutt, and A. Keens, “Solar absorption measurements of stratospheric OH in the UV with a Fourier-transform spectrometer,” Appl. Opt. 36, 6076–6082 (1997).
  16. C. B. Farmer, “High resolution infrared spectroscopy of the Sun and the Earth’s atmosphere from space,” Mikrochim. Acta (Wien) III, 189–214 (1987).
  17. G. C. Toon, “The JPL MkIV interferometer,” Opt. Photon. News 2, 19–21 (1991).
  18. A. Goldman, C. Paton-Walsh, W. Bell, G. C. Toon, J.-F. Blavier, B. Sen, M. T. Coffey, J. W. Hannigan, and W. G. Mankin, “Network for the Detection of Stratospheric Change Fourier transform infrared intercomparison at Table1 Mountain Facility, November, 1996,” J. Geophys. Res. 104, 30281–30303 (1999).
  19. R. Zander, D. H. Ehhalt, C. P. Rinsland, U. Shmidt, E. Mahieu, J. Rudolph, P. Demoulin, G. Roland, L. Delbouille, and A. J. Sauval, “Secular trend and seasonal variability of the column abundance of N2O above the Jungfraujoch station determined from solar spectra,” J. Geophys. Res. 99, 16745–16756 (1994).
  20. A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A–65A (1991).
  21. R. Williams, “Applications of Fourier transform spectrometry in the ultraviolet, visible, and near-IR,” Appl. Spectrosc. Rev. 25, 63–79 (1989).
  22. L. M. Faires, “Fourier transforms for analytic atomic spectroscopy,” Anal. Chem. 58, 1023A–1034A (1986).
  23. J. W. Brault, “Solar Fourier transform spectroscopy,” Oss. Mem. Oss. Astrofis. Arcetri 106, 33–50 (1979).
  24. S. T. Ridgway and J. W. Brault, “Astronomical Fourier transform spectroscopy revisited,” Annu. Rev. Astron. Astrophys. 22, 291–317 (1984).
  25. J. W. Brault, Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, Colo. (personal communication, 1992).
  26. A. C. Vandaele and M. Carleer, “Development of Fourier transform spectrometry for UV-visible differential optical absorption spectroscopy measurements of tropospheric minor constituents,” Appl. Opt. 38, 2630–2639 (1999).
  27. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, Chichester, UK, 1979).
  28. S. P. Sander, R. P. Cageao, and R. R. Friedl, “A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet,” in Optical Methods in Atmospheric Chemistry, U. Platt and H. I. Schiff, eds., Proc. SPIE 1715, 15–17 (1992).
  29. R. P. Walker and J. D. Rex, “Interferometer design and data handling in a high-vibration environment. Part 1: interferometer design,” in Multiplex and/or High Throughput Spectroscopy, G. A. Vanasse, ed., Proc. SPIE 191, 88–91 (1979).
  30. M. L. Forman, W. H. Steel, and G. A. Vanasse, “Correction of asymmetric interferograms obtained in Fourier spectroscopy,” J. Opt. Soc. Am. 56, 59–63 (1966).
  31. M. Allen and M. L. Delitsky, “A test of odd oxygen photochemistry using Spacelab 3 atmospheric trace molecule spectroscopy observations,” J. Geophys. Res. 96, 12883–12891 (1991).
  32. H.-P. Dorn, R. Neuroth, and A. Hofzumahaus, “Investigation of OH absorption cross sections of rotational transitions in the A2Σ+, v′ = 0 → X2Π, v″ = 0 band under atmospheric conditions—implications for tropospheric long-path absorption measurements,” J. Geophys. Res. 100, 7397–7409 (1995).
  33. R. P. Cageao, Y. L. Ha, Y. Jiang, M. F. Morgan, Y. L. Yung, and S. P. Sander, “Calculated hydroxyl A2Σ → X2Π (0,0) band emission rate factors applicable to atmospheric spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 57, 703–717 (1997).
  34. R. Beer, Remote Sensing by Fourier Transform Spectrometry (Wiley, New York, 1992), pp. 60–66.
  35. F. P. Mills, S. P. Sander, R. P. Cageao, V. Nemtchinov, Y. Jiang, M. A. Allen, and Y. L. Yung, “OH column measurements from the JPL Table Mountain Facility and comparisons with contemporaneous, collocated measurements of O3 and H2O,” in preparation (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited